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Abstract:
Nrf2 is a major transcriptional factor that controls gene expression in normal health and pathological conditions. It
regulates  and  controls  the  manifestation  of  various  major  elements  of  oxidative  stress,  neuro-inflammation,
autophagy, and mitochondrial bioenergetics in the centre and periphery. Besides, Nrf2 activity is also controlled at
various stages, such as protein degradation, transcription, and post-translation. Growing evidence suggests changes
in the levels of Nrf2 in degenerative disorders, such as Alzheimer's disease (AD). AD is characterised by elevated
oxidative stress, neuro-inflammation, synaptic dysfunction, and proteinopathies, which lead to the progressive loss of
memory. A decrease in the expression of Nrf2 and its downstream target genes was identified in AD. Recent studies
have  shown  that  Nrf2  interferes  with  various  main  pathogenic  processes  in  AD,  including  amyloid  and  tau
pathologies. The current review focuses on brief in the regulation of Nrf2 and the association of Nrf2 with AD, along
with the currently available Nrf2 activators.
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1. INTRODUCTION
Alzheimer’s  disease  (AD)  is  a  progressive  neurode-

generative  disorder  that  displays  amyloid  [1]  and  tau
proteinopathies [2]. Apart from these proteinopathies, the
classic  theme  in  various  diseases,  including  AD,  is
oxidative stress. The disparity between the generation of
free  radicals  and  the  body's  natural  antioxidant  defense
mechanism  is  known  as  oxidative  stress  [3,  4].  In
mitochondria,  peroxisomes,  and  the  endoplasmic  reti-
culum,  Reactive  Oxygen  Species  (ROS)  are  essential  for
various  endogenous  metabolic  reactions  and  molecular
signaling  pathways  [3,  5],  and  the  excess  production  of
ROS damages biological elements, such as DNA, RNA, and
proteins [2, 6, 7].

The unregulated redox balance is the collective result
of  a  variety  of  biological  processes,  including  metal

homeostasis and endogenous and exogenous stress [3, 4].
CNS  is  more  prone  to  oxidative  stress  due  to  its  high
metabolic  rate  and  high  ascorbate  levels  and  transition
metals,  which  act  as  pro-oxidants  [8,  9].  Depletion  of
antioxidants  increases  the  vulnerability  to  lipid
peroxidation,  genotoxicity,  protein  oxidation,  DNA  and
RNA  oxidation,  and  mitochondrial  depolarization.
Oxidative  stress  is  also  produced  by  excitotoxicity  and
plasticity  [8,  9],  which  leads  to  the  activation  of  various
transcription  factors  [10].  The  antioxidant  system in  the
body generates various enzymes that scavenge these free
radicals  and  offer  cytoprotection.  One  such  defence
system  is  the  Nrf2  signaling  system  [11,  12].

2. STRUCTURE AND FUNCTION OF THE Nrf2
Nrf2 (Nuclear Factor-Erythroid Factor 2) is a 66 KDa

protein  molecule.  Based  on  molecular  architecture,  the
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Nrf2  is  categorised  into  7  conserved  Neh  (Nrf2-ECH)
domains, namely Neh1-Neh7 [13]. Neh1 region consists of
a  regular  leucine  zipper  motif,  and  the  Neh2  domain
interrelates  with  Keap1  via  ETGE  and  DLG  motifs  [14].
This  Neh2  domain  is  required  for  the  stability  of  Nrf2.
While  Neh3,  Neh4,  and  Neh5  are  essential  for  the
transcription  of  Nrf2  target  genes  [15].  Furthermore,
Neh6  allows  Keap1-independent  regulation,  caused  by
GSK3β  phosphorylation  [16]  and  the  Neh7  domain,
associated with the retinoic X receptor a, which aids in the
repression of gene transcription of Nrf2 [17].

Nrf2 acts as a master regulator of antioxidant response
via  increasing  antioxidant  enzymes,  metabolism  of
xenobiotics, elimination of damaged proteins, suppression
of  inflammation  and  metabolic  damage,  and  influencing
various growth regulatory factors [18].

3. REGULATION OF Nrf2
There  are  three  major  regulatory  pathways,  where

Nrf2 gets degraded via ubiquitin. The first important one
is the use of Keap1; second, the use of glycogen synthase

(GSK3); and lastly, the β-TrCP-dependent cul-1-dependent
ligase complex [18].

3.1. Keap-1 Dependent Regulation
Kelch,  like  ECH-associated  protein  1  (Keap  1),  is

known to be the new Nrf2-binding protein. It  consists of
three  main  domains  that  interact  with  the  proteins:  the
BTB domain in the N-terminal region, the IV region in the
centre, and Kelch repeats in the C terminal. BTB mediates
binding  to  Cul3  of  Nrf2  ubiquitin  ligase  [19].  The
activation of Keap 1 is required for homeostasis, and the
depletion  of  Keap  1  induces  cell  death  [18].  Under
physiological conditions, the activity of Nrf2 is inhibited in
the  cytoplasm by  sequestration  and  degradation  of  Nrf2
via  Keap1.  The  Nrf2  Neh2  region  binds  to  Keap1  at  the
area between the BTB and Kelch repeat domains [19]. This
interaction  acts  as  an  adaptor  for  the  Cul3/Rbx1  E3
ubiquitin ligase complex, which causes the ubiquitination
of Nrf2 [20, 21]. Moreover, Keap1 sequesters Nrf2 to the
mitochondria via a ternary complex along with the PGAM5
protein [22, 23]. This sequestration is known to increase
the activation of Nrf2 in response to stressors [22].

Fig. (1). Schematic illustration of Nrf2-mediated regulation in neuronal cells (negative and positive regulation). The image is adapted
from Tejo and Quintanilla, 2021. CC BY 4.0 [https://creativecommons.org/licenses/by/4.0/].
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3.2. Regulation of Nrf2 via GSK-3
GSK-3β  regulates  a  number  of  targets  in  many  cell

signalling  pathways,  and  it  is  not  astonishing  that  this
enzyme is also involved in the control of Nrf-2 (Fig. 1). It is
a constitutively active kinase whose action is nullified by
insulin  [24].  Increased  insulin  signaling  triggers  protein
kinase B/Akt through phosphorylation. Consecutively, Akt
inhibits  GSK-3β via  phosphorylation of  Ser9.  This  kinase
exerts  negative  regulation  on  Nrf-2  by  modulating  its
distribution.  Increased  oxidative  stress  conditions  cause
down-regulation  of  Akt,  stimulation  of  GSK-3β,  and
translocation of Nrf-2 from the nucleus to cytoplasm, thus,
restricting the antioxidant response [25, 26]. The GSK-3β
inhibition results in the elevation of transcriptional activity
of Nrf-2 because of nuclear accumulation, thus signifying
the  fundamental  role  of  the  GSK-3β  in  Nrf-2-ARE  down-
regulation  after  oxidative  injury  [22,  25].  The  main
mechanism by which GSK-3β mediates Nrf-2 is known to
comprise Fyn, a tyrosine kinase that is phosphorylated by
activated  GSK-3β  and  causes  the  nuclear  localisation  of
Fyn. This activated Fyn further causes phosphorylation of
tyrosine 568 in nuclear Nrf-2, triggering the inhibition of
Nrf-2 protective gene transcription [26, 27].

3.3. Keap 1 Independent Regulation via β-TrCP
Apart  from  the  β-TrCP,  the  PI3K/Akt  pathway  also

plays a role in Nrf2 induction, independent of KEAP1 [28].
The  PI3K/Akt  signaling  stimulates  Nrf2  through  the
GSk-3β inhibition, which causes phosphorylation of Nrf2,
thus causing β-TrCP to consecutively ubiquitinate Nrf2 for
consequent proteasomal degradation [25, 29]. The β-TrCP
serves as a substratum receptor inside the SCF-ubiquitin
ligase β-TrCP and takes part in the ubiquitination of Nrf2
[30]. β-TrCP recognises its substrates by directly attaching
to  phosphorylated  destructed  motifs,  and  this  pattern
represents the GSK-3β target elements; thus, a variety of
its target proteins are known to be processed by β-TrCP.

4. Nrf2 AND ITS ROLE IN AD
AD  is  a  neurodegenerative  disorder  predominantly

exemplified  by  cognitive  dysfunction.  Pathologically,  the
disease exhibits β-amyloid plaques [31] and neurofibrillary
tangles  [32]  as  pathological  hallmarks.  Besides,  it  also
causes  oxidative  stress  [33,  34],  neuroinflammation  [35,
36],  microglial  activation  [36],  astrogliosis  [37],  and
synaptic  loss  [33,  38].  The  amyloid-β  proteins  of  the
amyloid  plaques  and  the  neurofibrillary  tangles  disrupt
homeostasis  and  lead  to  neuronal  death  and
neurodegeneration.  The  prevalence  of  AD  is  known  to
increase  logarithmically  with  age.  The  amyloid
pathogenesis  and  tauopathies  alter  the  mitochondrial
biogenesis  and  bioenergetics,  which  eventually  lead  to
oxidative  stress  [18].  Post-mortem  AD  brain  studies
revealed  the  presence  of  high  levels  of  lipid  oxidation
products,  oxidised DNA bases, and carbonyls in proteins
[39],  which  suggests  the  presence  of  oxidation  of
macromolecules  in  AD  brains.

Nrf2 is uniformly found in a different range of tissues
and  cells,  with  varying  amounts  of  protein  present  in

particular  cell  types  that  are  primarily  in  charge  of
homeostatic  adjustments.  Astrocytes  and  microglia,  for
instance, play a particularly important role in Nrf2 in the
brain since their expression levels are higher than those of
neurons  [40].  Astrocytes  are  highly  responsive  to  Nrf2
activation, while the Nrf2 modulates microglial dynamics,
thereby  reducing  the  inflammatory  mediators  and
increasing  the  anti-inflammatory  markers  [41].

Nrf2 signaling has been widely  studied in AD animal
models  over  the  last  few  decades,  indicating  its
downregulation.  Nrf2  serves  as  a  main  mediator  in
protecting against oxidative insults. Previous research has
shown that  the  Nrf2/ARE pathway was modulated in  AD
[34], and the levels of Nrf2 were decreased in the human
AD  hippocampus  [12].  The  absence  of  Keap  1  activated
Nrf2  and  induced  enzymes  in  phase  II  reactions  in
neuronal cells, thereby amplifying resistance to oxidative
insults [42]. It has been observed that Nrf2 can hinder AD,
and  the  agents  that  stimulate  Nrf2  have  shown
neuroprotective activities in preclinical models [43], while
the deficiency of Nrf2 exacerbates memory deficits [44].
Furthermore, in the rat model of AD, the Nrf2/ARE levels
were found to be downregulated, and the oxidative stress
markers,  such  as  the  SOD  and  catalase  levels,  were
decreased.  Also,  the  MDA  levels  were  increased  in  the
cortex and hippocampus [34, 35].

In another study, GSK-3β inhibition in mice was known
to raise nuclear Nrf2 in the cortex [45]. Glial activation was
found  in  AD,  leading  to  elevated  inflammatory  markers,
such as IL-1β, TNF-α, and COX2 [34]. Besides, NF-κB was
found to be associated near the amyloid plaques. It was also
found that the discrepancy between Nrf2 and NF-κB could
be a key part of AD pathology. While the NF-κB activation
causes  the  production  of  pro-inflammatory  markers  like
various cytokines and chemokines that further increase the
amyloid-β production and microglia activation [46, 47], NF-
κB is associated with β-secretase enzyme expression, as this
enzyme  possesses  a  binding  site  with  NF-κB,  thus,
associating with the inflammatory response [40]. In another
study,  the  molecular  association  between  Nrf2  and
inflammation was studied. It was found that Nrf2 restricted
lipopoly- saccharide-induced transcriptional stimulation of
proinflammatory cytokines like IL-6 and IL-1β. It was also
demonstrated  that  Nrf2-mediated  suppression  is
independent  of  oxidative  stress  and Nrf2-binding pattern.
Contrary  to  the  widely  accepted  view,  these  studies
reported that Nrf2 is the upstream controller of cytokines
and  the  basis  for  the  Nrf2-mediated  anti-inflammatory
approach  [48].

4.1. Targeting Nrf2 for AD Pathology
Multi-drug targeted therapy in AD came into existence

after  the  failure  of  many  clinical  trials  for  AD.  Target-
specific  options  can  be  achieved  by  targeting  multiple
pathological  pathways.  One  such  pathway  is  the  Nrf2
signaling  pathway.  As  discussed  above,  Nrf2  can
significantly offer neuroprotection in AD. So, treatment with
Nrf2  activating  agents  can  mitigate  AD.  Various  Nrf2
agents/compounds  are  listed  in  Table  1.
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Table 1. Literature representing the role of Nrf2 in various preclinical and clinical models.

S.No. Compound/molecule Models Uses Reference

1. Benincasa hispida Rat model of AD Antioxidant, anti-inflammatory [34]
2. Carnosic acid Transgenic mice model Antioxidant, anti-microbial, anti-inflammatory [49]

3. Astaxanthin 3xTg mice model Antioxidant, blood pressure regulation,
Anti-hyperlipidaemic [50]

4. DMF Transgenic model Anti-inflammatory [41]
5. Lycopene Transgenic mice model Antioxidant, anti-apoptotic [51]

6. Phenols (resveratrol, curcumin, gastrodin) Clinical trials and Rodent
models Antioxidant, anti-inflammatory NCT00678431,

NCT00164749 [52].

7. Ebselen 3xTg mice Antioxidant, suppression of mitogen-activated
kinases [53]

8. Tideglusib Clinical trial Antioxidant,
anti-inflammatory NCT01350362

9. Flavonoids (Fisetin, Hesperidin
anthocyanins, Apigenin) Mice models Antioxidant,

anti-inflammatory
[54-57]

.

10. Sulforaphane Clinical trial
Antioxidant,

anti-inflammatory, and
anti-apoptotic properties

NCT04213391

CONCLUSION
In  this  review,  we  discussed  various  studies  that

highlighted the neuroprotective role of the Nrf2 pathway in
AD. Nrf2 is  a conventional  example of  targeting oxidative
stress,  neuro-inflammation,  and  associated  underlying
disease  pathology.  Furthermore,  Nrf2  is  crucial  to  redox
balance  and  the  control  of  inflammation,  and  an
enhancement  in  the  effect  of  Nrf2  could  be  a  possible
therapeutic approach for AD. Evidence from animal models
revealed  that  a  pharmacological  therapy  to  slow  the
progression  of  AD  might  be  possible  through  Nrf2
activators.  Nrf2  activating  compounds/molecules  are
currently  approved  by  the  FDA  for  various
neurodegenerative conditions, and some molecules, such as
resveratrol, curcumin, and tideglusib (Table 1), are under
clinical trials. In summary, the upregulation of Nrf2 leads to
the  synthesis  of  antioxidant  and  anti-inflammatory
elements,  which  improves  AD  pathogenesis.
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