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Abstract:
Obesity is a major public health challenge and results from the complex interaction of many etiopathogenetic factors.
However, food-related hedonic stimuli and poor inhibitory control often appear to be specific maintenance factors,
and conventional treatments are sometimes ineffective. Transcranial magnetic stimulation is emerging as a promising
treatment  option.  Targeting  specific  brain  regions,  such  as  the  dorsolateral  prefrontal  cortex,  was  found  to  be
effective in modulating acute food craving and improving cognitive control.  This review traces the evolution and
development  of  transcranial  magnetic  stimulation  and  presents  the  results  of  recent  randomized  clinical  trials
conducted in obese subjects. These suggest that repetitive transcranial magnetic stimulation and deep transcranial
magnetic stimulation may be effective in reducing body weight, BMI and food cravings. The neural circuits involved
and the underlying mechanisms of action of this neurostimulation technique are also reviewed. Finally, outstanding
questions and future research directions are identified to further understand and develop this promising therapy.
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1. INTRODUCTION
The increasing prevalence of obesity is a major global

public health challenge. Excess body weight significantly
increases the risk of a number of chronic diseases, such as
type 2 diabetes mellitus, non-alcoholic fatty liver disease,
hypertension,  and  cardiovascular  disease,  including
myocardial infarction and stroke. Obesity is also strongly

associated with a wide range of health problems, including
osteoporosis,  joint  disease,  renal  dysfunction,
dyslipidaemia,  obstructive  sleep  apnoea,  and  certain
cancers. It can also lead to musculoskeletal problems and
rapid  cognitive  decline  [1-6].  These  negative  effects
underscore  the  importance  of  maintaining  a  healthy
weight.
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Obesity is a complex condition shaped by a variety of
influences,  including  physiological,  metabolic,  psycho-
logical,  and  environmental  factors  [7-10].  The  hedonic
aspect  of  eating,  characterised  by  strong  cravings  and
challenges in resisting certain foods, adds another layer of
complexity to the problem. In addition, although lifestyle
modification,  pharmacotherapy,  and  bariatric  surgery
offer potential benefits, their effectiveness is limited and
may not be appropriate for all individuals [11, 12].

Transcranial  magnetic  stimulation  (TMS),  a  non-
invasive method of modulating brain activity, is emerging
as a promising new treatment for obesity and associated
eating  disorders.  TMS  targets  specific  brain  regions
involved  in  the  regulation  of  intense  food  cravings  and
dietary  control  and  has  shown  promise  in  facilitating
weight loss [13-16]. Studying obesity through the lens of
TMS  is  challenging  due  to  the  complex  nature  of  the
disorder  and  the  significant  role  of  neurobehavioral
factors  [17,  18].

TMS  is  a  potential  intervention  for  modifying  neural
circuits  that  are  essential  for  controlling  appetite,
reducing  food  cravings,  and  regulating  impulses.  These
components  are  closely  linked  to  the  development  and
treatment  of  obesity  [14,  19].  Preliminary  studies  have
shown that TMS has a profound effect on eating behaviour
and  metabolic  functions,  opening  up  new  avenues  for
treatment  [20].

These  investigations  suggest  that  obesity  may  result
from imbalances in brain networks,  with some pathways
associated  with  gratification  mechanisms  and  others
involved  in  cognitive  control  and  impulse  inhibition
[21-23]. The increasing importance of neural function and
control  mechanisms  in  weight  management,  beyond
metabolic or lifestyle factors, is now recognised [17, 18].
In particular, the dorsolateral prefrontal cortex (dlPFC) is
a key neural site for modulating hunger and satiety signals
and plays an essential role in regulating impulses and food
choices [24, 25]. This region has become a specific target
of  neurostimulation  techniques  for  addictive  behaviours
and eating disorders because of its  role in the executive
functions  that  manage  the  cognitive  regulation  of  food
consumption  [26-28].  However,  the  specific  cognitive
mechanisms affected by the dlPFC that are modulated by
TMS remain largely undefined. It has been theorised that
such dynamics may include changes in reward valuation
[29],  attentional  biases  [30],  or  inhibitory  control  [31].
Whether TMS is effective in reducing food cravings in the
long-term has not been conclusively established. Further
research is needed to determine the most appropriate use
of this technology in the treatment of obesity and related
eating  disorders,  as  the  current  scientific  evidence  does
not provide precise guidelines [32, 33]. Initial research on
TMS  provides  convincing  evidence  of  its  therapeutic
potential and underlying mechanisms. These findings are a
fundamental prerequisite for more in-depth investigations
into  the  use  of  TMS  as  an  innovative  strategy  in  the
treatment  of  obesity.

This review summarises the current state of knowledge
on the use of TMS in the treatment of obesity, examines

the efficacy of common TMS techniques in obese subjects
enrolled in randomised controlled clinical trials, explores
potential  mechanisms  of  action,  and  highlights  areas  of
uncertainty that require further scientific investigation.

2.  NEURAL  MODULATION  BY  TRANSCRANIAL
MAGNETIC STIMULATION

TMS  employs  electromagnetic  induction  to  elicit
localized  electrical  currents  within  the  brain,  thereby
modulating  neuronal  activity  [34].  Initially  developed  to
treat  stubborn  psychiatric  conditions  such  as  mood
disorders,  substance  abuse,  and  post-traumatic  stress
disease [35-39], the application of TMS has subsequently
expanded  to  encompass  a  range  of  neurocognitive
disorders  [40-43]  such  as  schizophrenia  [44],  dementia
[45], and eating disorders [46, 47]. Repetitive Transcranial
Magnetic  Stimulation  (rTMS)  and  deep  Transcranial
Magnetic  Stimulation  (dTMS)  constitute  the  core
methodologies  within  the  TMS  framework  [48-50].  The
rTMS protocol employs a figure-of-eight electromagnetic
coil  to  generate  focal  magnetic  pulses  or  sequences  of
pulses that target discrete cortical  regions to a depth of
approximately  1.5  cm  below  the  scalp.  These  magnetic
pulses  can  modulate  cortical  excitability,  either
augmenting  or  diminishing  the  electrical  activity  within
the  targeted  neuronal  circuits.  Conversely,  dTMS  is
characterised by the use of an H-coil, which is designed to
extend  stimulation  to  both  cortical  and  subcortical
structures, achieving penetration depths of 4.5 to 5.5 cm
from  the  cranial  surface  [41,  51-53].  In  both  rTMS  and
dTMS  modalities,  the  use  of  high-frequency  stimulation
(≥5 Hz) is associated with an excitatory effect on neuronal
excitability, whereas low-frequency stimulation (≤1 Hz) is
associated  with  inhibitory  effects  [30,  54,  55].  Further
diversification  within  TMS  techniques  includes
intermittent theta burst stimulation (iTBS) and continuous
theta burst stimulation (cTBS). iTBS, characterised by its
high-frequency  burst  pattern,  is  postulated  to  induce  an
increase  in  cortical  excitability,  whereas  cTBS  is
associated with a decrease in cortical excitability [56, 57].
As it has been reported, these stimulation protocols have
been  found  to  provide  a  range  of  modulatory  effects  on
neural circuits, which highlights the potential usefulness
of  TMS  in  the  therapeutic  modulation  of  neurocognitive
and  neuropsychiatric  conditions.  TMS  is  highly  valued
within the clinical paradigm for its ability to induce lasting
therapeutic  changes  beyond  the  temporal  limits  of  the
stimulation sessions themselves [58]. The significance of
the  neurophysiological  changes  induced  by  TMS  is
highlighted  by  its  capacity  to  induce  long-term  synaptic
plasticity [59]. Further, rTMS can be classified into single-
session  and  multi-session  approaches.  The  former,  a
single-session  application,  is  extensively  employed  in
experimental  research  to  evaluate  the  immediate
neurophysiological  effects  of  rTMS.  The  latter  method
involves multiple sessions delivered over consecutive days
and  is  primarily  used  in  clinical  settings  for  extended
therapeutic  interventions  [34].

The  efficacy  and  specificity  of  TMS  interventions
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depend  on  the  precise  localization  of  the  targeted  brain
region.  Neuroimaging  techniques,  such  as  electro-
encephalography (EEG) or structural magnetic resonance
imaging  (MRI),  are  necessary  for  this  purpose.  These
techniques  should  be  complemented  by  neuronavigation
technologies,  a  methodology  that  has  been  extensively
documented  in  the  literature  [60,  61].  Precision  in
targeting is essential to optimize the therapeutic outcome
of TMS. TMS is considered a safe and non-invasive method
that is  generally  well-tolerated [62,  63].  However,  it  has
been  reported  that  the  incidence  of  side  effects  was
approximately  5%.  The  most  common  were  headache
(46%),  lightheadedness  (22%),  muscle  twitching  (10%),
and a general feeling of lightheadedness (10%) [64]. It is
important to note that the main safety concern with TMS
is epileptic seizures, although these are very rare and may
only  be  a  risk  for  those  with  a  pre-existing  epileptic
condition  [62-64].

3.  TRANSCRANIAL  MAGNETIC  STIMULATION  FOR
THE  TREATMENT  OF  OBESITY:  A  SYNTHESIS  OF
RANDOMIZED  CONTROLLED  TRIALS

In line with the latest scientific literature [27, 65, 66],
this  section  will  provide  an  overview  of  studies
investigating the effects of TMS in obese individuals. The
focus will  be on two specific TMS techniques, rTMS and
dTMS.  This  chapter  examines  rigorous  Randomized
Controlled  Trials  (RCTs)  comparing  active  neuro-
modulation  techniques  with  sham  interventions  to
determine  the  impact  of  such  stimulations  on  key
indicators of interest in the field of obesity research. The
particular metrics being monitored are body weight, body
mass index (BMI), and cravings for food.

3.1.  Repetitive  Transcranial  Magnetic  Stimulation
and Obesity

According to a study conducted by Kim and colleagues
in 2018 [32], 57 individuals between the ages of 18 and 65
were  randomly  assigned  to  two  groups  in  a  two-week,
single-blind trial.  Of  the participants,  29 received rTMS,
while  28  received  sham  treatment.  The  rTMS  sessions,
each lasting 20 minutes at a frequency of 10 Hz, targeted
the  left  dlPFC.  The  study  results  indicated  significant
weight loss in the rTMS group, accompanied by reductions
in BMI, visceral fat, and calorie intake.

Continuing  from  the  previous  study,  the  research
group  [67]  conducted  a  four-week  study  on  43  patients
who were classified as obese and aged between 18 and 70.
The  participants  were  divided  into  two  groups:  21
individuals received eight 20-minute sessions of rTMS at
10 Hz, while the remaining 22 individuals received sham
treatments. The study results indicate that individuals who
received  rTMS  treatment  experienced  a  significantly
greater weight loss (2.75 kg, SD 2.37) compared to those
who  received  the  sham  treatment  (0.38  kg,  SD  1.0).
Furthermore,  the  rTMS  group  also  showed  significant
reductions in fat mass and visceral adipose tissue by the
fourth week. Additionally, after treatment, the rTMS group
demonstrated reduced daily kilocalorie and carbohydrate

consumption compared to the control group.
In a study conducted in 2019, the effects of combining

rTMS  with  a  low-carbohydrate  diet  were  tested  on  37
overweight or obese patients [15]. The participants were
randomly  assigned  to  two  groups:  18  followed  the  diet
with  rTMS,  and  19  followed  the  diet  with  sham  rTMS.
After  17  sessions  of  10  Hz  rTMS  to  the  left  dlPFC,  the
treatment  group  showed  significant  reductions  in  body
weight  and  food  cravings,  as  well  as  improvements  in
anxiety symptoms, physical functionality, and body image.

In 2020, a study was conducted on 29 obese Filipino
patients  aged  between  15  and  65.  The  patients  were
randomly  assigned  to  either  a  treatment  group  (15
subjects)  or  a  sham  group  (14  subjects).  They  received
four 20-minute rTMS sessions at 10 Hz to the left dlPFC
over two weeks in a single-blind, monocentric setting [13].
Upon  completion  of  the  study,  the  treatment  group
exhibited a significant decrease in BMI (-0.6, SD 0.6) and
body weight (-1.3 kg, SD 1.3). It is worth noting that the
weight  reduction  did  not  appear  to  be  sustained beyond
the 6-12 week treatment period.

3.2.  Deep  Transcranial  Magnetic  Stimulation  and
Obesity

A pilot study was conducted on 33 obese individuals (9
men, 24 women, mean age 48.1 years, SD 10.6) [33]. The
participants were divided into three groups: 13 underwent
a  5-week  high-frequency  dTMS  treatment  (18  Hz;  HF
group), 10 received low-frequency dTMS (1 Hz; LF group),
and  10  received  placebo  treatments  (sham  group).  The
stimulation targeted the bilateral Prefrontal Cortex (PFC)
and  Insula,  consisting  of  15  sessions,  each  lasting  30
minutes.  Food  cravings,  metabolic  indicators,  and
neuroendocrine measures were assessed at baseline, after
5 weeks of treatment, and at follow-up sessions (1 month,
6  months,  and  1  year  post-treatment).  The  findings
showed a significant decrease in both body weight (-7.83
kg,  SD  2.28)  and  BMI  (-2.83,  SD  0.83)  in  the  HF  group
compared  to  the  sham  group.  Additionally,  there  was  a
significant trend towards reduced food cravings in the HF
group  compared  to  the  LF  and  sham  groups.  The  HF
group  also  demonstrated  significant  improvements  in
metabolic  variables  and  physical  activity.

In  another  study  involving  22  obese  individuals  (17
female; mean age 44.9 ± 2.2 years; BMI 37.5 ± 1.0 kg/m2)
[68], the same researchers suggested that dTMS may have
the potential to influence both the pathways of the brain-
gut  communication  and  the  composition  of  the  gut
microbiome. The study involved randomising participants
into three groups, each attending 30-minute sessions three
times  a  week  for  five  weeks.  They  received  either  high-
frequency (18 Hz - HF), low-frequency (1 Hz - LF), or sham
dTMS treatments,  respectively,  with  the  stimulation  site
being the bilateral PFC and Insula. After 5 weeks, the HF
group showed significant weight loss compared to the LF
and sham groups (HF: -4.1 kg, SD 0.8 vs. LF: -1.9 kg, SD
0.8 vs.  sham: -1.3 kg, SD 0.6). Moreover, it appears that
HF dTMS treatment has had a positive impact on the gut
microbiota  composition,  reversing  previous  changes  and
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promoting  bacterial  species  with  anti-inflammatory
properties.

A  preliminary  randomized,  double-blind,  placebo-
controlled  study  [14]  was  conducted  to  investigate  the
resting-state  functional  connectivity  (rsFC)  in  obese
patients after 15 sessions of 30-minute treatments.  Nine
participants underwent high-frequency (18 Hz - HF) dTMS
treatment, focusing on the bilateral PFC and Insula, three
times a week for five weeks, while 8 were given placebo
treatments (sham TMS group). Out of the 17 participants,
6 were diagnosed with Type 2 Diabetes (T2D). The results
indicate  that  the  experimental  group  experienced  a
significant  decrease  in  body  weight  and  BMI,  which
persisted  through  a  one-month  follow-up.  Additionally,
there  was  an  observed  enhancement  in  the  functional
brain connectivity within the medial Orbitofrontal Cortex
(mOFC), coupled with a reduction in connectivity with the
occipital  pole.  These  findings  indicate  a  potential  brain
mechanism  behind  weight  loss,  characterized  by
diminished  responsiveness  to  bottom-up  visual  sensory
inputs  and  an  increased  dependence  on  top-down
cognitive  decision-making  processes.

A  study  was  conducted  to  examine  the  correlation
between  psychological  symptoms  and  neuroendocrine
parameters in individuals with obesity [69]. The study also
investigated  the  effects  of  a  5-week  treatment  regimen
involving  30-minute  high-frequency  (18  Hz)  stimulations
targeting  the  bilateral  PFC  and  Insula  using  dTMS.  A
study was conducted on 45 patients who were obese, out
of which 33 were female. The patients had an average age
of 48.8 years (SD 9.9), body weight of 97.6 kg (SD 14.2),
and  BMI  of  36.2  (SD  4.2).  The  patients  were  randomly
assigned to two groups, out of which 26 patients received
high-frequency  (HF)  dTMS,  while  19  underwent  sham
stimulation. The study found that the HF group showed a
significant reduction in body weight and BMI, along with a
decrease  in  impulsivity  levels.  Additionally,  a  positive
correlation was observed between decreased impulsivity
and  leptin  levels.  These  results  indicate  that  dTMS  was
effective in reducing both BMI and impulsivity, improving
inhibitory  control  of  the  PFC,  and  impacting  the
neuroendocrine system, particularly with regard to leptin.

4.  MECHANISMS  OF  ACTION  OF  TMS  IN  THE
TREATMENT OF OBESITY

These  studies  suggest  that  both  TMS  methods  are
effective  in  reducing  body  weight  and  BMI,  with  high-
frequency  stimulation  of  the  dlPFC  showing  particular
promise,  which  is  in  line  with  previous  research  [18,
70-72].  However,  further  research  is  required  to
investigate the effects on food cravings [27]. The current
evidence  suggests  that  by  reducing  the  frequency  and
intensity of food cravings, it may be possible to decrease
calorie  intake  and  facilitate  fat  loss  [32,  67].  In  other
words,  by  strengthening  cognitive  regulatory
competencies,  individuals  may  be  better  equipped  to
exercise  discipline  in  their  dietary  practices.  This
enhancement provides the opportunity to choose healthier
food  options  instead  of  those  prompted  by  impulsive  or

emotional  consumption  patterns,  which  can  aid  in  the
weight loss process [73-77]. The phenomenon of craving,
characterized  as  an  intense  and  uncontrollable  urge  to
consume,  is  believed  to  be  influenced  by  dysfunction  in
frontostriatal  brain  circuits  that  are  involved  in  both
substance  abuse  and  overeating  [78].  High-frequency
rTMS  can  selectively  activate  dlPFC  while  reducing
activity in deeper regions such as the orbitofrontal cortex
(OFC)  and  anterior  cingulate  cortex  (ACC)  [79,  80].
However, the effects of TMS on food cravings appear to be
a  topic  of  debate,  with  some  studies  highlighting  the
ambiguity of treatment responses. A study was conducted
to  evaluate  the  effectiveness  of  high-frequency  rTMS
targeting  the  left  dlPFC  in  reducing  food  cravings  in  a
group of 28 female participants [81]. Both real and sham
rTMS  sessions  were  administered  before  and  after
participants were exposed to highly palatable foods. The
results  indicated  that  self-reported  craving  remained
unchanged after the real rTMS treatment but increased in
the sham condition. However, it should be noted that no
significant variations in snack consumption were observed
during  the  brief  5-minute  post-stimulation  period,
regardless of  the type of  rTMS administered.  In another
study,  the  effect  of  rTMS  on  the  left  PFC  in  10  healthy
women  was  investigated  using  an  improved  sham
condition 82]. The participants were randomly allocated to
one of two groups and were unaware of which treatment
they  were  receiving.  Both  conditions  demonstrated  a
noteworthy  decrease  in  craving,  with  no  significant
difference  observed  between  real  and  sham rTMS,  even
after  taking into account  the time elapsed since the last
meal. However, it was found that prefrontal rTMS did not
prove  to  be  superior  to  the  sham  condition  in  reducing
craving.  It  has  been  suggested  [78]  that  the  mild
discomfort induced by both real and simulated rTMS may
contribute  to  the  reduction  in  food  cravings,  suggesting
that  this  reduction may not  be solely  due to the specific
effects of rTMS. Further research is necessary to establish
whether the decrease in food cravings caused by rTMS is
directly  affected  by  the  uncomfortable  sensation  it
produces  or  if  it  occurs  through an  indirect  mechanism.
Craving  is  an  adaptive  mechanism  that  signals  the
organism's  nutritional  needs.  It  has  been  considered
essential for human survival, especially in an evolutionary
context, as it facilitated the accumulation of food supplies
in  anticipation  of  times  of  scarcity  [83].  For  example,  a
growing  appetite  for  iron-rich  foods,  such  as  meat,  has
been  documented  in  response  to  shortages  of  this
essential  nutrient  [84].  However,  it  is  worth  noting  that
the widespread availability of sugary and fatty foods has
transformed  these  previously  adaptive  cravings  into
potential  contributors  to  the  development  of  obesity  or
uncontrollable eating behaviour [85]. There is a growing
body of evidence to suggest that cravings are a key factor
in the obesity  epidemic [86-88].  Some studies  indicate a
correlation between obesity, binge eating behaviour, and
self-control issues. According to research, a lack of control
and an increased desire for  food,  especially  palatable or
high-calorie foods, may result in a loss of control over food
intake, leading to weight gain. Additionally, studies have
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indicated that higher food cravings are linked not only to
increased body weight but also to lower success rates in
weight  loss  programmes  [89-91].  According  to
experimental  studies,  there  may  be  common  neuro-
biological  bases  between  addiction  and  morbid  obesity,
particularly  in  the  phenomenon  of  craving  [92].  It  has
been observed that certain regions of  the brain,  such as
the OFC, are involved in both food craving and addiction
control. The OFC plays an essential role in assessing the
rewarding properties of stimuli, which suggests that both
food  and  substances  can  activate  it  in  a  similar  way.
Furthermore, it should be noted that there appears to be a
correlation between heightened activation of the OFC and
increased food cravings in individuals with normal weight
[93]. However, the full impact of brain stimulation on food
cravings  is  not  yet  fully  understood.  As  previously
described  [65],  there  are  various  potential  mechanisms
that  could  be  responsible,  such  as  improved  cognitive
control,  alterations  in  reward  perception,  or  heightened
dopaminergic activity. The role of the dlPFC is particularly
intriguing  in  this  context.  It  has  been  suggested  that
reduced  activity  in  the  dlPFC  may  contribute  to  weight
gain, as it has been linked to satiety and craving [94, 95].
On  the  other  hand,  stimulation  of  the  dlPFC  has  been
shown  to  enhance  cognitive  control  and  effectively
suppress  the  compulsive  urge  to  eat  [96].  Furthermore,
research  has  indicated  that  the  interaction  between  the
dlPFC and mOFC may affect the evaluation of food stimuli,
leading  to  a  reduction  in  attractiveness  and  more
regulated  food  choices  [29].  The  correlation  between
improved inhibitory control and reduced cravings suggests
that  neuromodulation  may  be  able  to  enhance  brain
networks  involved  in  behavioural  food  control  by
increasing  the  ability  to  resist  food-related  stimuli  [97].
According  to  research,  it  has  been  found  that  the
stimulation  of  the  dlPFC  can  enhance  cognitive  control
and reduce food cravings [98]. It has been observed that
the  dlPFC,  OFC,  and  ACC  together  form  the  executive
control network that is critical for desire management and
decision-making. Additionally, these regions interact with
the  orexinergic  system  [99-103].  Another  plausible
hypothesis  is  that  neurostimulation  of  the  dlPFC  may
stimulate  dopamine  production  in  the  corpus  striatum
[104]. It is suggested that dopamine levels may increase
either  directly,  through  corticostriatal  projections,  or
indirectly,  through  cortical  projections  to  mesostriatal
dopamine  neurons  located  in  the  midbrain  [105-107].
Research  has  indicated  that  PFC  stimulation  in  animal
studies  can  activate  both  the  striatum  and  Ventral
Tegmental  Areas  (VTA),  suggesting  that  both  pathways
are sensitive to neurostimulation [108, 109]. Additionally,
dTMS has been shown to rebalance the dopamine-cortisol
ratio  during  alcohol  withdrawal  [110].  It  is  well
established  that  dopamine  plays  a  significant  role  in
inhibitory control, and abnormalities in this area can lead
to behavioural disorders such as obesity [111]. Indeed, a
correlation has been found between BMI and a decrease in
the availability of dopamine D2 receptors [112]. This could
potentially  lead  to  pathological  eating  behaviour  as  the
brain  attempts  to  compensate  for  reduced  activity  in

motivational  and  reward  circuits.  Hence,  it  may  be
suggested  that  individuals  who  experience  intense  food
cravings  and/or  obesity  could  potentially  benefit  from
modifying  their  dopamine  levels  through  non-invasive
brain modulation techniques. Moreover, it has been shown
that dTMS is associated with changes in leptin levels and
behavioural impulsivity [69]. Leptin, a hormone produced
by  adipocytes  and  intestinal  enterocytes,  plays  a  crucial
role  in  regulating  energy  homeostasis  [113].  The
regulation of leptin levels may have a positive impact on
appetite  and food intake,  while  leptin resistance may be
linked  to  increased  food  intake  and  the  onset  of  obesity
[114].  Specifically,  a  5-week  course  of  radiofrequency
dTMS  treatment  led  to  significant  changes  in  the  gut
microbiome  composition  of  obese  subjects  [68].  These
changes  helped  to  normalize  the  microbiota,  bringing  it
closer  to  that  found  in  normal-weight  subjects,  and  also
favored  an  increase  in  bacterial  species  with  anti-
inflammatory properties. These findings suggest that this
intervention  may  have  therapeutic  potential  in  the
treatment of obesity. Although there are many theoretical
insights  to  explain  the  effects  of  neurostimulation  on
weight loss,  identifying the exact mechanisms remains a
challenge.

CONCLUSION AND FUTURE DIRECTION
This  review examines  the  potential  of  TMS as  a  new

approach  to  treating  obesity.  The  review  suggests  that
non-invasive  neuromodulation  may  be  an  effective
standalone  treatment  or  may  improve  therapeutic
outcomes when used in combination with other strategies,
such  as  diet.  The  theoretical  basis  for  this  approach  is
supported  by  experimental  results  that  demonstrate  the
complex interplay between neurophysiology and obesity. It
proposes a paradigm shift towards specific interventions
aimed at modulating and normalising neural circuits using
advanced  neuromodulation  techniques  [20,  93,  100,
115-117].  However,  it  may  be  beneficial  for  future
research  to  address  the  limitations  and  unresolved
questions  surrounding  the  potential  applications  of
neuromodulation  in  eating  behaviour.  To  gain  a  more
complete and accurate understanding of the role of TMS
in  dysfunctional  eating  behaviour,  researchers  could
consider  focusing  on  the  following  key  aspects.

In  experimental  neuromodulation  research,  it  is
essential  to  enhance  study  blinding.  It  is  recommended
that  participants  remain  unaware  of  the  treatment  they
are  receiving,  whether  real  or  sham,  to  prevent  any
potential bias in their behaviour or responses. It has been
observed  in  some  neuromodulation  studies  that
participants were able to correctly identify experimental
conditions  with  79% accuracy  [82,  118].  Therefore,  it  is
suggested that future research should explore the use of
parallel methods to enhance blinding.

Another  important  aspect  is  to  consider  using  more
meaningful outcome measures. While some studies rely on
self-report  measures  directly  reported  by  participants,
others use weight  indices that  may be outdated,  making
their  true  clinical  relevance  uncertain.  For  example,  the
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BMI  has  been  criticised  for  its  inability  to  distinguish
between  muscle  mass  and  fat  mass,  as  well  as  for  its
inability  to  measure  regional  adiposity  [119-121].  In
contrast, it could be argued that waist circumference is a
more sensitive measure of visceral adiposity [122-124].

Further  research  is  needed  to  fully  understand  the
interaction  between  neuromodulation  and  gender.
Neuropsychological  evidence  suggests  that  gender  may
have  a  significant  impact  on  prefrontal  executive
performance  [125].  It  has  been  observed  that  men  and
women exhibit  different  abilities  in  specific  subdomains,
such as attention, planning, inhibition, and verbal fluency
[126-132].  However,  it  is  important  to  note  that  these
differences do not necessarily imply systematic differences
between the sexes. Instead, they reflect differences in the
cognitive  strategies  employed  during  cognitive  tasks
[133]. These differences could be due to variability in the
anatomic-functional  characteristics  of  the  brain  and  the
involvement  of  neurotransmitter  systems,  including
dopamine  and  serotonin  [134-141].

Moreover,  when  studying  feeding  processes  and
mechanisms,  it  is  crucial  to  take  into  account  the
fluctuations in brain activity that may be associated with
metabolic  conditions.  Therefore,  it  is  recommended  that
studies explicitly state the time since the last meal and its
effect.  The  review  reports  that  hunger  and  satiety
conditions  may  produce  significant  differences  in
hormonal and neurotransmitter systems. Similarly, when
considering the effects of neuromodulation, it is important
to  take  into  account  the  individual's  previous  or  current
diets,  including their  duration and any possible  relapses
[143]. It is worth noting that individuals who suffer from
eating  disorders  and  obesity  often  follow  strict  diets,
which  can  significantly  affect  brain  excitability  and
responsiveness  to  neuromodulation.  Additionally,  it  is
crucial to report whether participants are currently losing
weight  or  maintaining  a  stable  weight.  The  passage
presents  data  that  has  implications  for  both  the  brain's
resting  state  and  its  response  to  neuromodulation  [20].
Furthermore, it is worth noting that an individual’s unique
anatomical  features  may  affect  the  propagation  of
electromagnetic signals [143]. Therefore, it is important to
investigate  the  impact  of  intracranial  adipose  tissue  on
current density distribution, as adipose tissue is known to
be more resistive [63, 144].

As  shown  in  this  review,  TMS  offers  a  promising
perspective  for  the  study  and  treatment  of  neural
vulnerabilities  associated  with  obesity.  However,  while
neurostimulation techniques were originally developed to
address the lack of effective treatments in neurology and
psychiatry,  the  application  of  neuromodulation  to  the
modification  of  eating  behaviour  is  a  more  recent
development in the field. TMS has been shown to produce
temporary and long-term changes by actively affecting the
strength  of  synaptic  connections.  The  primary  target  of
TMS is the dlPFC, a complex brain region associated with
executive function and cognitive control of food intake. It
can influence the balance between craving and the ability
to  exercise  cognitive  control,  potentially  reducing  the

rewarding  mechanisms  that  drive  excessive  eating.  It  is
worth  noting  that  research  in  the  area  of  actively
manipulating the human brain is  still  in  its  early  stages,
and no definitive conclusions are available. Moreover, it is
essential to bear in mind that transcranial devices should
not be treated as playthings and must be used responsibly
[143].

LIST OF ABBREVIATIONS

TMS = Transcranial magnetic stimulation
dlPFC = Dorsolateral prefrontal cortex
rTMS = Repetitive Transcranial Magnetic Stimulation
dTMS = Deep Transcranial Magnetic Stimulation
iTBS = Intermittent theta burst stimulation
cTBS = Continuous theta burst stimulation
EEG = Electroencephalography
MRI = Structural magnetic resonance imaging
RCTs = Randomized Controlled Trials
BMI = Body mass index
HF = High Frequency
LF = Low frequency
PFC = Prefrontal Cortex
rsFC = Resting-state functional connectivity
T2D = Type 2 Diabetes
mOFC = Medial Orbitofrontal Cortex
OFC = Orbitofrontal cortex
ACC = Anterior cingulate cortex
VTA = Ventral Tegmental Areas
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