
1874-205X/22

REVIEW ARTICLE

Exosomes and their Cargo as a New Avenue for Brain and Treatment of CNS-Related Diseases

Tarek Benameur¹, Maria Antonietta Panaro² and Chiara Porro^{3,*}

¹Department of Biomedical Sciences, College of Medicine, King Faisal University, 31982, Al- Ahsa, Kingdom of Saudi Arabia ²Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70125, Italy ³Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71121, Italy

Abstract:

Extracellular Vesicles (EVs), which belong to nanoscale vesicles, including microvesicles (MVs) and exosomes, are now considered a new important tool for intercellular neuronal communication in the Central Nervous System (CNS) under physiological and pathological conditions. EVs are shed into blood, peripheral body fluids and cerebrospinal fluid (CSF) by a large variety of cells.

EVs can act locally on neighboring and distant cells. EVs represent the fingerprints of the originating cells and can carry a variety of molecular constituents of their cell of origin, including protein, lipids, DNA and microRNAs (miRNAs).

The most studied EVs are the exosomes because they are ubiquitous and have the capacity to transfer cell-derived components and bioactive molecules to target cells. In this minireview, we focused on cell-cell communication in CNS mediated by exosomes and their important cargo as an innovative way to treat or follow up with CNS diseases.

Keywords: Exosomes, Extracellular vesicles, Cellular communication, Biomarkers, MiRNAs, CNS.

Article HistoryReceived: August 2, 2021Revised: November 9, 2021Accepted: November 24, 2021

1. INTRODUCTION

The central nervous system (CNS) is characterized by twoway communication between its various cellular components [1]. Recent studies have shown that the pathogenesis of several neurodegenerative diseases involves an impaired communication between the different cell types in the nervous system [2 - 5].

It is well documented that intercellular communication is mediated by direct cell-cell contact and cell secretome [6, 7]. The main components of the cell secretome are EVs, which can be divided into three subtypes: microvesicles, exosomes, and apoptotic bodies. EVs are heterogeneous membrane structures that circulate in the extracellular body and are involved in cellto-cell signalling. In the CNS, all cell types release EVs, which can be either taken up by neighbouring cells or released into the cerebrospinal fluid (CSF) and blood. Moreover, the exosomes can cross the Blood-Brain Barrier (BBB) [8, 9].

Cells release EVs, either as a part of normal physiological conditions or in response to precise stimuli. In addition, EVs

* Address correspondence to this author at the Department of Clinical and Experimental Medicine, University of Foggia, Ospedali Riuniti, Viale L. Pinto, 1, 71100 Foggia, Italy; E-mail: chiara.porro@unifg.it may exert their role in communication by delivering their cargo molecules implicated in both physiological and pathological processes, from the parent cells to the target cells. Due to their small size, EVs can be diffused from the release site to reach multiple biological fluids [10, 11].

In this minireview, we have summarized the current state of knowledge on the contribution of exosomes and their material to the pathogenesis of CNS disorders, as well as their involvement in the maintenance of healthy physiological conditions.

2. EXTRACELLULAR VESICLES (EVs)

EVs represent a new emerging mode of cellular communication. They circulate in the extracellular body fluid and have the ability to modulate the different biological processes and pathways, including neuroinflammation and a large number of diverse diseases, including neurological disorders [12 - 15]. Prokaryotic and eukaryotic cell types secrete EVs, and in response to specific external signals, the level and the composition of EVs are in a dynamic state reflecting the parental cells.

Moreover, EVs are isolated from the main human body fluids by centrifugation. Cells produce different classes of EVs

with a diameter of 1-1000 nm: Exosomes (10 –100 nm), microvesicles (MVs) (100 – 1000 nm), and apoptotic bodies (1– 5 nm) [16 - 21]. However, it is evident that this classification is defective, as these size ranges overlap, suggesting that microvesicles in size ranges of exosomes can also bud directly from the cell membrane. Two common pathways are known for the production of EVs: the first pathway, the endosomal sorting complexes required for transport (ESCRT) \Box dependent pathway with sphingolipids and the second pathway is an ESCRT-independent route in which tetraspanins are involved [22 - 32].

Certainly, these two different pathways that are generated from the same cell have different EVs with different cargo acting on different target cells [32]. EVs consist of heterogeneous membranous structures and are formed by a phospholipid bilayer that contains active biological molecular components of the parental cell, including proteins, lipids, DNAs, mRNAs, miRNAs, non coding RNAs, and organelles [33].

Various protein classes are present in the vesicles, including histones in apoptotic vesicles and exosomal tetraspanins, (CD9, CD63, and CD81) [33, 34]. The most important protein markers that are isolated from MVs are surface receptors, integral membrane proteins, cytosolic proteins. RNAs molecules such as: mRNAs and miRNAs have also been isolated from exosomes and can be used as diagnostic biomarkers [35].

However, various RNA species have been found in EVs, mainly mRNAs and miRNAs. Cells appear to take up EVs through endocytic routes, including endocytosis as the preferred route [36]. However, the penetration of EVs into the cells involves various mechanisms, such as clathrin dependent [37] or independent endocytosis [38], phagocytosis [39], caveolin mediated uptake [40], and lipid raft mediated absorption [41]. In addition, the presence of proteins and glycoproteins on the EVs surface can influence their mode of entry [42, 43]. In the host cell, EVs can influence their biological messengers in distinct ways, for example, by delivering receptors and/or exchanging phospholipids between cells, consigning intracellular proteins or transferring mRNA, which act as signaling complexes and stimulate target cells directly [44]. Anyway, the principal way utilized by EVs, *i.e.*, to stimulate host cells, remains unclear. Various methods and technologies have been developed to detect and isolate EVs from biological fluids based on their physic-chemical properties. Another important parameter used to study EVs is their density. Moreover, different classes of EVs can be isolated by differential ultracentrifugation. Indeed, exosomes [45] and exosome-like vesicles [46] can be isolated with centrifugation at 100, $000 \times g$ or more [47], while Microparticles(MPs)/Microvesicles (MVs) [48] can be isolated with centrifugation at $10,000 \times g$ [16]. The most common used techniques to characterize EVs, which provide the necessary details required regarding the structure of EVs are: atomic force microscopy, procoagulant assays, flow cytometry, and ELISA-based solid-phase capture assays [49, 50]. In addition to electron microscopy, other imaging techniques, including scanning electron microscope (SEM) and the transmission

electron microscope (TEM) are also used to analyse all EVs [51]. A large number of studies have reported that EVs in the CNS act as promising vectors in the pathogenesis of neurological diseases, or intercellular communication, or are used for vaccine and drug delivery. Furthermore, circulating EVs can also be used as biomarkers for diagnosis and therapeutic follow-up of CNS-associated diseases [52, 53].

3. EXOSOMES

Various studies have highlighted the great potential of exosomes in cell-to-cell exchanges in the CNS, which can act locally on neighbouring and distant cells [45, 54, 55]. Exosomes, the fingerprints of the cells of origin, can carry a variety of molecules derived from their parent cells, including miRNAs [56]. In fact, exosomes are highly enriched in miRNAs [57, 58].

Recent findings have provided further evidence for the emerging roles of miRNAs and exosomes in neural development, homeostasis, neuron-glia communications, CNS health, and a range of physiological functions [59 - 61]. In addition, we proposed a bidirectional communication model between neurons and glia in neuroprotection, indicating that miRNA from oligodendroglial exosomes contributes to neuroprotection and neuronal integrity [62]. Exosomes can transfer their cargo to the host cell and interact in different ways: receptor-ligand, a direct fusion of membranes, or internalization via endocytosis [63].

The exosomal biological molecules influence the host cells through the following mechanisms: (1) ligand-surface receptor binding and stimulation of target cells, (2) transfer of activated receptors to recipient cells, and (3) epigenetic reprogramming of recipient cells via the delivery of genetic material, RNA, phospholipids and functional proteins [64]. Among all the EVs, exosomes are the most studied EV because of their capacity to deliver natural cellular components. Inside exosomes, different biologically active compounds, including mRNAs, miRNAs and proteins, are present [33, 64, 65].

3.1. The Role of Exosomes miRNA in CNS Health and Diseases

Neurons are the most important cell types in the nervous system and have the ability to receive and transmit impulses through chemical or electrical signals to the periphery and glial cells. In the CNS, glial cells are represented by oligodendrocytes, astrocytes, ependymal and microglial cells, while in the peripheral nervous system (PNS), they are represented by Schwann cells and Satellite glial cells [66]. Exosomes are active actors in intercellular communication, whereas endosomes are released from all cell types, including neurons and glial cells, under healthy and pathophysiological conditions.

The existing literature has highlighted that both exosomes and EVs are used interchangeably and inaccurately to describe exosomes. These exosomes would be useful to investigate the method used in isolation and characterization. The composition of the exosomes not only reflects the content of their original cells, but also their original conditions. These include proteins, lipids, nucleic acids, such as non-coding RNA, rRNA (ribosomal RNA), and miRNA [53]. This is in line with emerging data showing that exosomes derived from glial cells and mesenchymal stromal cells (MSC) regulate neuronal function by transferring their miRNAs [67, 68]. In fact, MSCderived exosomes have been shown to transfer miR-17-92 clusters to the distal axons of many cortical neurons, thereby promoting axonal growth [68]. These results suggest that the internalization of exosomal miRNA by the distal axons can modulate axonal biological functions. Additional data have reported an abundance of miRNAs in the embryonic CSFderived exosomes [69]. It was found that these exosomes enriched with various subsets of miRNAs in the embryonic CSF (eCSF), including miR-124, promote neurogenesis [70]. In addition, another subset of miRNAs such as miRNAs -124, -125b, and -320a/b were also highly enriched in exosomes derived from human eCSF [69]. Interestingly, exposure of eNSCs to eCSF exosomes enriched with miRNAs resulted in NSC amplification. This implies exosomes in eCSF as essential determinants of eNSC development through the coordinated transfer of evolutionarily conserved molecules that are crucial for the regulation of eNSC during corticogenesis [69, 71]. The transfer of another set of exosome-derived miRNA, miR-132, released by neurons to endothelial cells, resulted in the maintenance of BBB integrity by modulating the expression of eukaryotic Elongation Factor 2 Kinase (Eef2k) and the vascular junction cadherin (Cdh5) [72]. This novel mechanism demonstrated the importance of the exosomal miRNA as an

essential mediator for neurovascular communication, which is important for regulating the vascular integrity of the brain and maintaining its homeostatic functions. The regulatory effect of the exosomal miRNA is not limited to neurons only but is extended to the most important glial cells of the brain astrocytes and oligodendrocytes. These glial cells release miRNAs loaded exosomes to maintain homeostasis. Interestingly, Jovičić et al. found that the profile of miRNAs in exosomes secreted from cultured primary mouse astrocytes differs significantly from the profile of miRNAs detected in astrocytes, suggesting an underlying selective mechanism that certain exosomal miRNAs may include or exclude. The functions and targets of these miRNAs need to be further investigated [62]. More recent findings have shown that exosomal-containing miRNAs were enriched in the synaptodendritic compartment and generated in an activitydependent manner [73, 74]. This has further provided support to the role of mRNA as a critical regulator of neural plasticity. In summary, the above-mentioned studies suggest that exosome-derived miRNAs may contribute to a variety of homeostatic and adaptive neuronal processes in the normal brain. However, a dysregulation of these mechanisms can lead to premature aging, neuronal damage, and/or neuropathological disorders. Table 1 illustrates the exosomal miRNAs and their various functions in brain cells of mice, rats, and humans in healthy individuals or those with CNS diseases.

Table 1. CNS exosomal miRNA and their various functions in health and diseases conditions.

Exosomal MiRNA Name	Exosomes Origin	Study Model	Target Pathways/CNS Component	Major Function	References
miR-124-3p	CSF-derived exosomes	SOD1G93A mice model of Amyotrophic Lateral Sclerosis (ALS)	Spinal neurons.	Potential use of CSF exosomal miR-124-3p as a disease stage indicator in ALS.	[90]
miR-124	Microglia	Cultured BV2 microglial cells	Targets PDE4B.	Reducing neuroinflammation and increasing neurite growth.	[91]
miR-223;	Dementia patients' serum	Human	AKT pathway through the gene PTEN.	Regulation of dementia- associated apoptosis . Promising biomarker for diagnosing and prognostic evaluation of dementia.	[92]
miR-223-3p highest level expression with other miRNAS	Human plasma	Older individuals (Human)	Various brain functional pathways.	Possible biomarkers in the assessment of age-related cognitive decline and/or in predicting blood-brain barrier dysfunctions.	[93, 94]
miR-140-5p, miR-197-3p, and miR-501-3p	Human serum	Machine learning models to determine whether miRNA can be utilized as a blood- based biomarker of cognitive aging.	Cognitive aging target brain components.	Prediction of multiple cognitive outcomes including in healthy older adults.	[95]
exosomal miRNAs derived fromhypothalamic NSC	Primary culture of NSC	Mouse model and <i>in vitr</i> o cultured NSC	Anti-aging speed controlling mechanisms and related hypothalamic pathways.	The anti-aging effect of hypothalamic Neural stem cells (NSC) is partially mediated by exosomal miRNAs secreted from these cells.	[96]

4 The Open Neurology Journal, 2022, Volume 16

Exosomal MiRNA Name	Exosomes Origin	Study Model	Target Pathways/CNS Component	Major Function	Reference
miR-501-3p	Mouse cerebral endothelial cells	Mouse model of Vascular Cognitive Impairment (VCI)	Cognition and aging processes related pathways.	Predicting BBB disruption and the development of vascular cognitive decline; synaptic plasticity. New avenue to develop optimal treatment for CNS disease with BBB disruption related neurological disorders including dementia. Potential biomarker of AD.	[97 - 99]
miR-127-3p	AD patient's serum	Human	Disease-specific mechanisms that could explain differences between AD and FTD.	Potential biomarker for differential diagnosis of Frontotemporal Dementia (FTD). To discriminate between FTD and Alzheimer disease (AD).	[100]
miR-141-3p	Serum plasma of AD patients	Human	Disease-specific mechanics	Exosomal miRNA as diagnostic biomarkers for neurodegenerative diseases (<i>e.g.</i> Alzheimer and Parkinson diseases).	[101 - 104]
miR-141-3p and miR-30d	Primary Human fetal astrocytes	Cultured primary astrocytes	Targets implicated in apoptosis, neuroinflammatory, and neurodegeneration showing possible roles of the selected miRNAs in these pathways.	Potential role in regulating the inflammatory response and oxidative stress induced by IL-1β serve as potential biomarkers of CNS neuroinflammation associated with neurological disorders and injuries.	[105]
miR-223;	Serum plasma of dementia patient	Human serum	Disease-specific signalling pathways.	Serum exosomal miR-223 is a promising biomarker for diagnosing dementia and evaluating the progression of disease.	[106]
miR-501-3p	Cultured hippocampal and cortical embryonic rats neuron	Embryonic rat model	Dendrites through the NMDAR subunit GluN2A, local regulation of AMPAR expression in dendrites.	Important roles of miR-501-3p, in NMDAR-dependent GluA1 expression and spine remodelling.	[98]
miR-191 and miR-135	Mouse hippocampus	Sprague Dawley rat embryos ; mouse models	Spine remodelling during development	Essential role for sustained spine remodelling associated with synaptic long-term depression.	[107]
miR-193b-3p	Cultured Bone marrow mesenchymal stem cells (BMSCs) isolated from mouse models	Plasma exosomes in subarachnoid haemorrhage patients and healthy controls.	Remodelling of inflammatory Reponses and neuroprotective effects via the inhibition of HDAC3/NF-kB signal pathway.	The transfer of miR-193b-3p into the brain after subarachnoid haemorrhage (SAH) attenuated neuroinflammation and reduced neuronal degeneration.	[108]
miR-361	Astrocytes-derived exosomal miR-361	Rat model of cerebral Ischemic(I)/Reperfusion (R) injury	signalling pathway by targeting CTSB.	miR-361 increased OGD/R- inhibited PC12 cell activity and has anti-apoptotic effect. miR-361 targeted cathepsin B (CTSB). miR-361 reduced nerve damage in rats with cerebral I/R rats . Possible novel avenue for treating cerebral I/R injury.	[109]
miR-146a, miR-335-3p, miR-335-5p and miR-155	PD human serum	Idiopathic Parkinson Disease (iPD); patients with a mutation in the leucine-rich repeat kinase 2 (LRRK2) gene).	miRNAs regulate cellular mechanisms implicated in PD pathogenesis, such as inflammatory pathways.	miR-146a, miR-335-3p, and miR-335-5p downregulated in iPD and LRRK2-PD patients versus controls . miR-155 was upregulated in LRRK2-PD compared to iPD patients .	[110]
miR-21, miR-34	Significantly increased in substantia nigra compacta and amygdala respectively	Human PD brain tissue and human SH-SY5Y neuroblastoma cell line	Cell death pathway; pathways responsible for α-synuclein turnover.	While miR-21 and miR-34a are commonly associated with impaired cell death pathway; important role in P pathogenesis and as potentieal biomarkers for PD diagnosis.	[111]

3.2. The Role of Exosomal miRNAs in CNS Diseases, Therapeutics, and Diagnostic Biomarkers under Pathological Conditions

Jia et al. have shown that exosome cargo can have deleterious effects. Indeed, high-glucose (HG) stimulated exosomes have been shown to produce high levels of miR-28, -31a, and -130a compared to exosomes derived from non-high glucose- stimulated Schwann cells. In addition, in vitro treatment of distal axons with HG exosomes reduced axonal growth. These results demonstrate a functional role of exosomal miRNAs derived from HG- stimulated Schwann cells in promoting the development of diabetic peripheral neuropathy [75]. Functional recovery remains a real challenge after peripheral nerve injuries. This essentially depends on the reprogramming of differentiated Schwann cells (dSCs) into the repair phenotype (rSCs), which are heavily involved in axonal regeneration and neural tissue homeostasis. Interestingly, the repair phenotype releases exosomes that are internalized by the peripheral neurons, promoting axonal regeneration. The reprogramming mechanism of SCs is accompanied by the secretion of exosomes with regenerative potential. These exosomes are characterized by a repair-specific miRNA cargo that promotes neurite growth. Interestingly, an increased expression of miRNA-21, responsible for the regenerative capacity of rSC exosomes was shown. This activates PTEN and PI3-kinase, which are responsible for a large number of biological functions and homeostasis [76]. These results have reinforced our belief that the modification of exosomal miRNA cargo can be viewed as another important feature of the reparative and regenerative potential of SCs by improving the regeneration of axons and their functional recovery after nerve damage. Beyond their biological functions in brain development, health, and CNS homeostatic functions, several studies have demonstrated that exosomal miRNA are potential candidates of miRNA-based therapy against hypoxic-ischemic brain injury. Indeed, the investigation of the effect of nonischemic and ischemic cerebral endothelial cells (CECs)derived exosomes on axonal growth and changes of endogenous miRNA profiles within recipient neurons showed that both of these cell types significantly stimulate axonal growth. These observed effects were mediated by the modulation of axonal and stromal miRNAs and their target proteins which are involved in the mechanisms of axonal growth [77]. Exosomes and their cargo miRNAs were able to target key neuropathophysiological signaling pathways and modulate neuroinflammatory processes that are involved in a wide variety of neurological diseases.

This offers new strategies to prevent long-term disease development and progression [11]. Furthermore, exosomal miRNAs were considered as key regulators of gene expression in the CNS microenvironment and genes-related CNS diseases. Exosomal miRNA are considered as potential biomarkers for the diagnosis of CNS -associated diseases [78]. It was recently pointed out that miRNA networks have a regulatory function of cell- type-specific transcriptomes during human brain development [79]. The profiles of the exosomal miRNA derived from certain brain cells can not only influence brain development but also reflect brain damage [80]. It is well established that the BBB microenvironment is the protective structure of the CNS. Given the fact that exosomes can cross the BBB, they could serve as promising accessible diagnostic biomarkers of brain dysfunction. Recent studies have reported that the BBB microenvironment can be controlled by miRNA [81]. More interestingly and similar to BBB, the blood-tumor barrier (BTB) restricts paracellular diffusion. Ma et al. have shown that miR- 181a increases the permeability of the BTB by targeting Kruppel-like factor 6 (a transcription factor), suggesting the therapeutic potential of miR-181a against gliomas. In another set of experiments [82], findings have strengthened our convictions about the role of miRNA in therapeutics. Indeed, the authors have shown that exosomes derived from mesenchymal stem cells that overexpress microRNA-199a- have an inhibitory effect on glioma progression by downregulating ArfGAP with GTPase domain, ankyrin repeat, and PH domain 2 (AGAP2). In addition, the combination of miR-199a and hMSCs delivering miR-199a have enhanced the chemosensitivity of glioma cells to temozolomide (TMZ) and inhibited tumor growth in vivo. Interestingly, in line with the previously reported role of miR-199a-3p in suppressing the proliferation of glioma cells by regulating the AKT /mTOR signaling pathway [83], interestingly, it was found that the over-expression of miR-199a or the silencing of AGAP2 has led to the inhibition of glioma cell proliferation, migration, and invasion. A recent study has suggested the potential application of exosomal miR-210, miR-5194, and miR- 449 as promising novel noninvasive and highly sensitive diagnostic and prognostic biomarkers for glioma patients [84]. Moreover, the circulating miRNAs can be potentially used in the clinical management of gliomas with different histological grades in patients with a brain tumor [85], showing a correlation between the circulating levels of exosomal miRNA and the development of mental disorders.

CONCLUSION

The incidence of CNS disorders is increasing, and new treatment strategies can be very useful in improving patient management. Various researches in recent years have focused on the investigation of the mechanism involved in neuroprotection [86 - 89]. In addition, exosomes may be an important research topic as therapeutic agents and also as biomarkers in CNS disorders. Exosomes are released from brain cells and can pass through the BBB. In addition, they can be found in CFS, where they could be isolated and analysed to monitor the pathological progress of CNS diseases or treatment assessment and follow-up with the disease progression.

Despite the considerable growing interest in the regenerative ability to circulate exosomal-derived contents and particularly miRNA in CNS health and CNS-related diseases, further investigations are warranted to elucidate the mechanisms of the bi-directional transfer of exosomal miRNA across the BBB. Future perspectives exploring the exosomal miRNA in the various neurological contexts should focus on profiling changes in size or number of exosomes released and changes in cargo.

Taken together, these studies shed new light on the importance of developing new therapeutic strategies for CNS disorders and preventing further CNS damage.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

Dr. Chiara Porro is the Editorial Board Member of The Open Neurology Journal.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

- Perry VH, Teeling J. Microglia and macrophages of the central nervous system: The contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 2013; 35(5): 601-12. [http://dx.doi.org/10.1007/s00281-013-0382-8] [PMID: 23732506]
- [2] Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30(4): 379-87.
 [http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
- [3] Castillo X, Castro-Obregón S, Gutiérrez-Becker B, et al. Re-thinking the etiological framework of neurodegeneration. Front Neurosci 2019; 13: 728.
- [http://dx.doi.org/10.3389/fnins.2019.00728] [PMID: 31396030]
 [4] Garden GA, La Spada AR. Intercellular (mis)communication in neurodegenerative disease. Neuron 2012; 73(5): 886-901.
 [http://dx.doi.org/10.1016/j.neuron.2012.02.017] [PMID: 22405200]
- [5] Cihankaya H, Theiss C, Matschke V. Significance of intercellular communication for neurodegenerative diseases. Neural Regen Res 2022; 17(5): 1015-7.
- [http://dx.doi.org/10.4103/1673-5374.324840] [PMID: 34558526]
- [6] Huo L, Du X, Li X, Liu S, Xu Y. The emerging role of neural cellderived exosomes in intercellular communication in health and neurodegenerative diseases. Front Neurosci 2021; 15: 738442. [http://dx.doi.org/10.3389/fnins.2021.738442] [PMID: 34531720]
- [7] Mittelbrunn M, Sánchez-Madrid F. Intercellular communication: Diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 2012; 13(5): 328-35.
 [http://dx.doi.org/10.1038/nrm3335] [PMID: 22510790]
- [8] Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol 2017; 27(3): 172-88.
- [http://dx.doi.org/10.1016/j.tcb.2016.11.003] [PMID: 27979573]
 [9] Abels ER, Breakefield XO. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 2016; 36(3): 301-12.
- [http://dx.doi.org/10.1007/s10571-016-0366-z] [PMID: 27053351] [10] Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular
- vesicles: Composition, biological relevance, and methods of study. Bioscience 2015; 65(8): 783-97. [http://dx.doi.org/10.1093/biosci/biv084] [PMID: 26955082]
- [11] Panaro MA, Benameur T, Porro C. Extracellular vesicles mirna cargo for microglia polarization in traumatic brain injury. Biomolecules 2020; 10(6): 901.
- [http://dx.doi.org/10.3390/biom10060901] [PMID: 32545705]
 [12] Kumar A, Stoica BA, Loane DJ, *et al.* Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury.
- J Neuroinflammation 2017; 14(1): 47.

 [http://dx.doi.org/10.1186/s12974-017-0819-4] [PMID: 28292310]

 [13]
 Korkut C, Li Y, Koles K, *et al.* Regulation of postsynaptic retrograde
- signaling by presynaptic exosome release. Neuron 2013; 77(6): 1039-46. [http://dx.doi.org/10.1016/j.neuron.2013.01.013] [PMID: 23522040]
- [14] Chivet M, Javalet C, Laulagnier K, Blot B, Hemming FJ, Sadoul R. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles 2014; 3(1): 24722.
 - [http://dx.doi.org/10.3402/jev.v3.24722] [PMID: 25398455]
- Carandini T, Colombo F, Finardi A, *et al.* Microvesicles: What is the role in multiple sclerosis? Front Neurol 2015; 6: 111.
 [http://dx.doi.org/10.3389/fneur.2015.00111] [PMID: 26074867]
- [16] Lacedonia D, Carpagnano GE, Trotta T, et al. Microparticles in

sputum of COPD patients: A potential biomarker of the disease? Int J Chron Obstruct Pulmon Dis 2016; 11: 527-33. [PMID: 27042041]

- [17] Fevrier B, Vilette D, Archer F, et al. Cells release prions in association with exosomes. Proc Natl Acad Sci USA 2004; 101(26): 9683-8. [http://dx.doi.org/10.1073/pnas.0308413101] [PMID: 15210972]
- [18] Zhang X, Abels ER, Redzic JS, Margulis J, Finkbeiner S, Breakefield XO. Potential transfer of polyglutamine and CAG-repeat RNA in extracellular vesicles in huntington's disease: Background and evaluation in cell culture. Cell Mol Neurobiol 2016; 36(3): 459-70. [http://dx.doi.org/10.1007/s10571-016-0350-7] [PMID: 26951563]
- [19] Trotta T, Panaro MA, Cianciulli A, Mori G, Di Benedetto A, Porro C. Microglia-derived extracellular vesicles in Alzheimer's Disease: A double-edged sword. Biochem Pharmacol 2018; 148: 184-92. [http://dx.doi.org/10.1016/j.bcp.2017.12.020] [PMID: 29305855]
- [20] Porro C, Panaro MA, Lofrumento DD, Hasalla E, Trotta T. The multiple roles of exosomes in Parkinson's disease: an overview. Immunotoxicol 2019; 41(4): 469-76. [http://dx.doi.org/10.1080/08923973.2019.1650371] [PMID: 31405314]
- [21] Pricci M, Bourget JM, Robitaille H, et al. Applications of human tissue-engineered blood vessel models to study the effects of shed membrane microparticles from T-lymphocytes on vascular function. Tissue Eng Part A 2009; 15(1): 137-45. [http://dx.doi.org/10.1089/ten.tea.2007.0360] [PMID: 18925833]
- [22] Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol 2005; 17(7): 879-87. [http://dx.doi.org/10.1093/intimm/dxh267] [PMID: 15908444]
- [23] Lässer C, Alikhani VS, Ekström K, et al. Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. J Transl Med 2011; 9(1): 9. [http://dx.doi.org/10.1186/1479-5876-9-9] [PMID: 21235781]
- [24] Perkumas KM, Hoffman EA, McKay BS, Allingham RR, Stamer WD. Myocilin-associated exosomes in human ocular samples. Exp Eye Res 2007; 84(1): 209-12. [http://dx.doi.org/10.1016/j.exer.2006.09.020] [PMID: 17094967]
- [25] Asea A, Jean-Pierre C, Kaur P, *et al.* Heat shock protein-containing exosomes in mid-trimester anniotic fluids. J Reprod Immunol 2008; 79(1): 12-7.
 [http://dx.doi.org/10.1016/j.jri.2008.06.001] [PMID: 18715652]
- [26] Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 2011; 9(1): 86.
- [http://dx.doi.org/10.1186/1479-5876-9-86] [PMID: 21651777]
 [27] Aalberts M, Sostaric E, Wubbolts R, *et al.* Spermatozoa recruit prostasomes in response to capacitation induction. Biochim Biophys
- Acta 2013; 1834(11): 2326-35. [http://dx.doi.org/10.1016/j.bbapap.2012.08.008] [PMID: 22940639]
- [28] Ronquist G, Brody I. The prostasome: Its secretion and function in man. Biochim Biophys Acta 1985; 822(2): 203-18. [http://dx.doi.org/10.1016/0304-4157(85)90008-5] [PMID: 2992593]
- [29] Lässer C, O'Neil SE, Ekerljung L, Ekström K, Sjöstrand M, Lötvall J. RNA-containing exosomes in human nasal secretions. Am J Rhinol
- Allergy 2011; 25(2): 89-93. [http://dx.doi.org/10.2500/ajra.2011.25.3573] [PMID: 21172122] [30] Street JM, Barran PE, Mackay CL, *et al.* Identification and proteomic
- profiling of exosomes in human cerebrospinal fluid. J Transl Med 2012; 10(1): 5. [http://dx.doi.org/10.1186/1479-5876-10-5] [PMID: 22221959]
- [31] Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327(5965): 580-3. [http://dx.doi.org/10.1126/science.1181928] [PMID: 20110505]
- [32] Porro C, Di Gioia S, Trotta T, *et al.* Pro-inflammatory effect of cystic fibrosis sputum microparticles in the murine lung. J Cyst Fibros 2013; 12(6): 721-8.
- [http://dx.doi.org/10.1016/j.jcf.2013.03.002] [PMID: 23567201] [33] Porro C, Trotta T, Panaro MA. Microvesicles in the brain: Biomarker,
- messenger or mediator? J Neuroimmunol 2015; 288: 70-8. [http://dx.doi.org/10.1016/j.jneuroim.2015.09.006] [PMID: 26531697]
- [34] Kumar A, Stoica BA, Loane DJ, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation 2017; 14(1): 47. [http://dx.doi.org/10.1186/s12974-017-0819-4] [PMID: 28292310]
- [35] Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.

[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]

- [36] Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3(1): 1093. [http://dx.doi.org/10.3402/jev.v3.24641] [PMID: 25143819]
- [37] Tian T, Zhu YL, Zhou YY, et al. Exosome uptake through clathrinmediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 2014; 289(32): 22258-67. [http://dx.doi.org/10.1074/jbc.M114.588046] [PMID: 24951588]
- [141] Fitzner D, Schnars M, van Rossum D, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 2011; 124(3): 447-58.
 [http://dx.doi.org/10.1242/jcs.074088]
- [39] Feng D, Zhao WL, Ye YY, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic 2010; 11(5): 675-87.
 [http://dx.doi.org/10.1111/j.1600-0854.2010.01041.x] [PMID: 20136776]
- [40] Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveoladependent endocytosis and promote phenotypic modulation in target cells. J Virol 2013; 87(18): 10334-47. [http://dx.doi.org/10.1128/JVI.01310-13] [PMID: 23864627]
- [41] Izquierdo-Useros N, Naranjo-Gómez M, Archer J, et al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 2009; 113(12): 2732-41. [http://dx.doi.org/10.1182/blood-2008-05-158642]
- [42] Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol 2014; 5: 442. [http://dx.doi.org/10.3389/fimmu.2014.00442]
- [43] Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA 2013; 110(43): 17380-5. [http://dx.doi.org/10.1073/pnas.1304266110] [PMID: 24101524]
- [44] Chen J, Li C, Chen L. The role of microvesicles derived from mesenchymal stem cells in lung diseases. BioMed Res Int 2015; 2015: 985814.
 [http://dx.doi.org/10.1155/2015/985814] [PMID: 26064975]
- [45] Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.

[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]

- [46] Hawari FI, Rouhani FN, Cui X, et al. Release of full-length 55-kDa TNF receptor 1 in exosome-like vesicles: A mechanism for generation of soluble cytokine receptors. Proc Natl Acad Sci USA 2004; 101(5): 1297-302.
- [http://dx.doi.org/10.1073/pnas.0307981100] [PMID: 14745008]
 [47] Théry C, Boussac M, Véron P, *et al.* Proteomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001; 166(12): 7309-18.
- [http://dx.doi.org/10.4049/jimmunol.166.12.7309] [PMID: 11390481]
 [48] Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9(8): 581-93.
- [http://dx.doi.org/10.1038/nri2567] [PMID: 19498381]
 [49] Lacroix R, Judicone C, Poncelet P, et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: Towards standardization of protocol. J Thromb Haemost 2012; 10(3): 437-46.
 [http://dx.doi.org/10.1111/j.1538-7836.2011.04610.x] [PMID: 22212198]
- [50] Morelli AE, Larregina AT, Shufesky WJ, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 2004; 104(10): 3257-66.
- [http://dx.doi.org/10.1182/blood-2004-03-0824] [PMID: 15284116]
 [51] Noble JM, Roberts LM, Vidavsky N, *et al.* Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J Struct Biol 2020; 210(1)107474
- [http://dx.doi.org/10.1016/j.jsb.2020.107474] [PMID: 32032755]
 [52] Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira de Almeida L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J Control Release 2017; 262: 247-58

[http://dx.doi.org/10.1016/j.jconrel.2017.07.001] [PMID: 28687495]

- [53] Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79. [http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
- [54] Chen H, Wang L, Zeng X, et al. Exosomes, a new star for targeted

delivery. Front Cell Dev Biol 2021; 9751079 [http://dx.doi.org/10.3389/fcell.2021.751079] [PMID: 34692704]

- [55] Zhang G, Yang P. A novel cell-cell communication mechanism in the nervous system: Exosomes. J Neurosci Res 2018; 96(1): 45-52. [http://dx.doi.org/10.1002/jnr.24113] [PMID: 28718905]
- [56] Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. J Proteome 2010; 73(10): 1907-20.

[http://dx.doi.org/10.1016/j.jprot.2010.06.006] [PMID: 20601276]

- [57] Gheinani AH, Vögeli M, Baumgartner U, et al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep 2018; 8(1): 3945. [http://dx.doi.org/10.1038/s41598-018-22142-x] [PMID: 29500443]
- [58] Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012; 7(3): e30679.
 - [http://dx.doi.org/10.1371/journal.pone.0030679] [PMID: 22427800]
- [59] Frühbeis C, Fröhlich D, Krämer-Albers E-M. Emerging roles of exosomes in neuron-glia communication. Front Physiol 2012; 3: 119. [http://dx.doi.org/10.3389/fphys.2012.00119] [PMID: 22557979]
- [60] Budnik V, Ruiz-Cañada C, Wendler F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 2016; 17(3): 160-72.

[http://dx.doi.org/10.1038/nrn.2015.29] [PMID: 26891626]

- [61] Frühbeis C, Fröhlich D, Kuo WP, Krämer-Albers EM. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 2013; 7: 182.
- [http://dx.doi.org/10.3389/fncel.2013.00182] [PMID: 24194697]
 [62] Frühbeis C, Fröhlich D, Kuo WP, *et al.* Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol 2013; 11(7): e1001604.
 [http://dx.doi.org/10.1371/journal.pbio.1001604] [PMID: 23874151]
- [63] Mirzaei H, Sahebkar A, Jaafari MR, Goodarzi M, Mirzaei HR. Diagnostic and therapeutic potential of exosomes in cancer: The beginning of a new tale? J Cell Physiol 2017; 232(12): 3251-60. [http://dx.doi.org/10.1002/jcp.25739] [PMID: 27966794]
- [64] Tian T, Wang Y, Wang H, Zhu Z, Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 2010; 111(2): 488-96. [http://dx.doi.org/10.1002/jcb.22733] [PMID: 20533300]
- [65] Panaro MA, Corrado A, Benameur T, Paolo CF, Cici D, Porro C. The emerging role of curcumin in the modulation of TLR-4 signaling pathway: Focus on neuroprotective and anti-rheumatic properties. Int J Mol Sci 2020; 21(7): 2299. [http://dx.doi.org/10.3390/ijms21072299] [PMID: 32225104]
- [66] Caruso Bavisotto C, Scalia F, Marino Gammazza A, et al. Extracellular vesicle-mediated cell⁻Cell communication in the nervous system: Focus on neurological diseases. Int J Mol Sci 2019; 20(2): 434.

[http://dx.doi.org/10.3390/ijms20020434] [PMID: 30669512]

[67] Xin H, Katakowski M, Wang F, *et al.* MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 2017; 48(3): 747-53.
 [http://dx.doi.org/10.1161/STROKEAHA.116.015204] [PMID:

[http://dx.doi.org/10.1161/STROKEAHA.116.015204] [PMID: 28232590] 58] Zhang Y, Chopp M, Liu XS, *et al.* Exosomes derived from

[68] Zhang Y, Chopp M, Liu XS, *et al.* Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol 2017; 54(4): 2659-73.

[http://dx.doi.org/10.1007/s12035-016-9851-0] [PMID: 26993303]

[69] Feliciano DM, Zhang S, Nasrallah CM, Lisgo SN, Bordey A. Embryonic cerebrospinal fluid nanovesicles carry evolutionarily conserved molecules and promote neural stem cell amplification. PLoS One 2014; 9(2): e88810.

[http://dx.doi.org/10.1371/journal.pone.0088810]

- [70] Visvanathan J, Lee S, Lee B, Lee JW, Lee SK. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 2007; 21(7): 744-9. [http://dx.doi.org/10.1101/gad.1519107] [PMID: 17403776]
- [71] Blandford SN, Galloway DA, Moore CS. The roles of extracellular vesicle microRNAs in the central nervous system. Glia 2018; 66(11): 2267-78.

[http://dx.doi.org/10.1002/glia.23445] [PMID: 29726599]

[72] Xu B, Zhang Y, Du XF, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res 2017; 27(7): 882-97.

[http://dx.doi.org/10.1038/cr.2017.62] [PMID: 28429770]

[73] Jovičić A, Gitler AD. Distinct repertoires of microRNAs present in

mouse astrocytes compared to astrocyte-secreted exosomes. PLoS One 2017; 12(2): e0171418.

[http://dx.doi.org/10.1371/journal.pone.0171418] [PMID: 28152040]

- [74] Goldie BJ, Dun MD, Lin M, et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res 2014; 42(14): 9195-208.
 [http://dx.doi.org/10.1093/nar/gku594] [PMID: 25053844]
- [75] Jia L, Chopp M, Wang L, Lu X, Szalad A, Zhang ZG. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy. FASEB J 2018; 32(12) [http://dx.doi.org/10.1096/fj.201800597R]
- [76] López-Leal R, Díaz-Viraqué F, Catalán RJ, et al. Schwann cell reprogramming into repair cells increases miRNA-21 expression in exosomes promoting axonal growth. J Cell Sci 2020; 133(12)
- Zhang Y, Qin Y, Chopp M, et al. Ischemic cerebral endothelial cellderived exosomes promote axonal growth. Stroke 2020; 51(12): 3701-12.
 [http://dx.doi.org/10.1161/STROKEAHA.120.031728] [PMID]

[http://dx.doi.org/10.1161/STROKEAHA.120.031728] [PMID: 33138691]

[78] Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: Biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol 2019; 183101694 [http://dx.doi.org/10.1016/j.pneurobio.2019.101694] [PMID:

31542363]

- [79] Gillet V, Hunting DJ, Takser L. Turing revisited: Decoding the microRNA messages in brain extracellular vesicles for early detection of neurodevelopmental disorders. Curr Environ Health Rep 2016; 3(3): 188-201.
 [http://dx.doi.org/10.1007/s40572-016-0093-0] [PMID: 27301443]
- [http://dx.doi.org/10.100//js405/22/10/05/32/11/http://s73044-5]
 [80] Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. MicroRNAs: Possible regulatory molecular switch controlling the bbb microenvironment. Mol Ther Nucleic Acids 2020; 19(19): 933-6.
 [http://dx.doi.org/10.1016/j.omtn.2019.12.024] [PMID: 32004864]
- [81] Ma J, Yao Y, Wang P, et al. MiR-181a regulates blood-tumor barrier permeability by targeting Krüppel-like factor 6. J Cereb Blood Flow Metab 2014; 34(11): 1826-36.
- [http://dx.doi.org/10.1038/jcbfm.2014.152] [PMID: 25182666]
 Yu L, Gui S, Liu Y, *et al.* Exosomes derived from microRNA-199aoverexpressing mesenchymal stem cells inhibit glioma progression by
- down-regulating AGAP2. Aging (Albany NY) 2019; 11(15): 5300-18.
 [83] Shen L, Sun C, Li Y, *et al.* MicroRNA-199a-3p suppresses glioma cell proliferation by regulating the AKT/mTOR signaling pathway.
- Tumour Biol 2015; 36(9): 6929-38. [http://dx.doi.org/10.1007/s13277-015-3409-z] [PMID: 25854175]
- [84] Tabibkhooei A, Izadpanahi M, Arab A, et al. Profiling of novel circulating microRNAs as a non-invasive biomarker in diagnosis and follow-up of high and low-grade gliomas. Clin Neurol Neurosurg 2020; 190105652
- [http://dx.doi.org/10.1016/j.clineuro.2019.105652] [PMID: 31896490]
 [85] Saeedi S, Israel S, Nagy C, Turecki G. The emerging role of exosomes in mental disorders. Transl Psychiatry 2019; 9(1): 122.
- [http://dx.doi.org/10.1038/s41398-019-0459-9] [PMID: 30923321]
 [86] Panaro MA, Benameur T, Porro C. Hypothalamic neuropeptide brain protection: Focus on oxytocin. J Clin Med 2020; 9(5): 1534.
- [http://dx.doi.org/10.3390/jcm9051534] [PMID: 32438751]
 [87] Porro C, Cianciulli A, Panaro MA. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules 2020; 10(7): 1017.
 [http://dx.doi.org/10.3390/biom10071017] [PMID: 32659950]
- [88] Porro C, Cianciulli A, Trotta T, Lofrumento DD, Panaro MA. Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS signaling pathway in BV-2 microglial cells. Biology (Basel) 2019; 8(3): 51.
- [89] Calvello R, Cianciulli A, Nicolardi G, et al. Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of parkinson's disease, shifting M1 to M2 microglia responses. J Neuroimmune Pharmacol 2017; 12(2): 327-39. [http://dx.doi.org/10.1007/s11481-016-9720-7] [PMID: 27987058]
- [90] Yelick J, Men Y, Jin S, Seo S, Espejo-Porras F, Yang Y. Elevated exosomal secretion of miR-124-3p from spinal neurons positively associates with disease severity in ALS. Exp Neurol 2020; 333113414 [http://dx.doi.org/10.1016/j.expneurol.2020.113414] [PMID: 32712030]
- [91] Huang S, Ge X, Yu J, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J 2018; 32(1): 512-28.

[http://dx.doi.org/10.1096/fj.201700673r] [PMID: 28935818]

- [92] Wei H, Xu Y, Xu W, et al. Serum exosomal miR-223 serves as a potential diagnostic and prognostic biomarker for dementia. Neuroscience 2018; 379: 167-76. [http://dx.doi.org/10.1016/j.neuroscience.2018.03.016] [PMID:
- 29559383]
 [93] Toyama K, Mogi M, Tsao PS. microRNA-based biomarker for dementia. Aging (Albany NY) 2019; 11(5): 1329-30.
 [http://dx.doi.org/10.18632/aging.101868] [PMID: 30867338]
- [94] Rani A, O'Shea A, Ianov L, Cohen RA, Woods AJ, Foster TC. miRNA in circulating microvesicles as biomarkers for age-related cognitive decline. Front Aging Neurosci 2017; 9: 323. [http://dx.doi.org/10.3389/fnagi.2017.00323] [PMID: 29046635]
- [95] Gullett JM, Chen Z, O'Shea A, et al. MicroRNA predicts cognitive performance in healthy older adults. Neurobiol Aging 2020; 95: 186-94.
 [http://dx.doi.org/10.1016/j.neurobiolaging.2020.07.023] [PMID:

32846274] Thene V Kin MS. Lie P. et al. Hypothelamic star calls control

[96] Zhang Y, Kim MS, Jia B, *et al.* Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 2017; 548(7665): 52-7.

[http://dx.doi.org/10.1038/nature23282] [PMID: 28746310]

- [97] Toyama K, Spin JM, Deng AC, et al. MicroRNA-mediated therapy modulating blood-brain barrier disruption improves vascular cognitive impairment. Arterioscler Thromb Vasc Biol 2018; 38(6): 1392-406. [http://dx.doi.org/10.1161/ATVBAHA.118.310822] [PMID: 29650692]
- [98] Hu Z, Zhao J, Hu T, Luo Y, Zhu J, Li Z. miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1. J Cell Biol 2015; 208(7): 949-59. [http://dx.doi.org/10.1083/jcb.201404092] [PMID: 25800054]
 - [http://dx.doi.org/10.1083/jcb.201404092] [PMID: 25800054]
- [99] Piscopo P, Grasso M, Puopolo M, et al. Circulating miR-127-3p as a potential biomarker for differential diagnosis in frontotemporal dementia. J Alzheimers Dis 2018; 65(2): 455-64. [http://dx.doi.org/10.3233/JAD-180364] [PMID: 30056425]
- [100] Wang X, Zhou Y, Gao Q, et al. The role of exosomal micrornas and oxidative stress in neurodegenerative diseases. Oxid Med Cell Longev 2020; 2020: 3232869. [http://dx.doi.org/10.1155/2020/3232869] [PMID: 33193999]
- [101] Chen JJ, Zhao B, Zhao J, Li S. Potential roles of exosomal micrornas as diagnostic biomarkers and therapeutic application in alzheimer's disease. Neural Plast 2017; 20177027380 [http://dx.doi.org/10.1155/2017/7027380] [PMID: 28770113]
- [102] Riancho J, Santurtun A, Sánchez-Juan P. Characterization of Alzheimer's disease micro-RNA profile in exosome-enriched CSF samples. Methods Mol Biol 2019; 2044: 343-52.
- [http://dx.doi.org/10.1007/978-1-4939-9706-0_22] [PMID: 31432424] [103] Cao XY, Lu JM, Zhao ZQ, *et al.* MicroRNA biomarkers of parkinson's
- disease in serum exosome-like microvesicles. Neurosci Lett 2017; 644: 94-9. [http://dx.doi.org/10.1016/j.neulet.2017.02.045]
- [104] Gayen M, Bhomia M, Balakathiresan N, Knollmann-Ritschel B. Exosomal micrornas released by activated astrocytes as potential neuroinflammatory biomarkers. Int J Mol Sci 2020; 21(7): E2312. [http://dx.doi.org/10.3390/ijms21072312] [PMID: 32230793]
- [105] Wei H, Xu Y, Xu W, et al. Serum exosomal mir-223 serves as a potential diagnostic and prognostic biomarker for dementia. Neuroscience 2018; 379: 167-76.
 [http://dx.doi.org/10.1016/j.neuroscience.2018.03.016] [PMID: 29559383]
- [106] Hu Z, Yu D, Gu QH, et al. miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat Commun 2014; 5: 3263.
- [107] Lai N, Wu D, Liang T, et al. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J Neuroinflammation 2014; 74: 020.

[http://dx.doi.org/10.1186/s12974-020-01745-0]

- [108] Bu X, Li D, Wang F, Sun Q, Zhang Z. Protective role of astrocytederived exosomal *microRNA-361* in cerebral ischemic-reperfusion injury by regulating the *AMPK/mTOR* signaling pathway and targeting *CTSB*. Neuropsychiatr Dis Treat 2020; 16: 1863-77. [http://dx.doi.org/10.2147/NDT.S260748] [PMID: 32801720]
- [109] Oliveira SR, Dionísio PA, Correia Guedes L, et al. Circulating Inflammatory miRNAs Associated with Parkinson's Disease Pathophysiology. Biomolecules 2020; 10(6): 945. [http://dx.doi.org/10.3390/biom10060945] [PMID: 32585840]

[110] Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA, Cooper JM. Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson's disease. Cell Death Dis 2013; 4(3): e545.

[http://dx.doi.org/10.1038/cddis.2013.73] [PMID: 23492776]

 [111] Cosín-Tomás M, Antonell A, Lladó A, et al. Plasma miR-34a-5p and miR-545-3p as early biomarkers of alzheimer's disease: Potential and limitations. Mol Neurobiol 2017; 54(7): 5550-62.
 [http://dx.doi.org/10.1007/s12035-016-0088-8] [PMID: 27631879]

© 2022 Benameur et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.