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Abstract: Inflammasomes are protein platforms consisting of multiple proteins. The biological function includes the activation of caspase-1,
leading to  the  maturation of  IL-1β and IL-18.  These pro-inflammatory cytokines  promote fundamental  inflammatory processes  in  numerous
infectious  diseases.  The  inflammasome-mediated  inflammation  has  become  increasingly  important  in  central  nervous  system  disorders.  In
neurodegenerative disorders, significant contributors to disease progression include neuroinflammation and inflammatory cascades initiated by the
inflammasome protein  complex.  This  review discusses  the  recent  progress  of  research  on  inflammasome associated  with  neurodegenerative
disorders.
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1. INTRODUCTION
Neurodegenerative  disorders  are  characterized  by  the

progressive  structural  and  functional  degeneration  of  nerve
cells  in  the  Central  Nervous System (CNS) [1].  Most  neuro-
degenerative  diseases,  including  Alzheimer’s  disease  (AD),
Parkinson’s  disease  (PD),  Multiple  Sclerosis  (MS),  Amyo-
trophic  Lateral  Sclerosis  (ALS),  and epilepsy,  are  associated
with chronic neuroinflammation [2, 3] and increased levels of
cytokines and activated immune cells [4].

Inflammasomes expressed in phagocytes, including macro-
phages  and  dendritic  cells,  activate  caspase-1  in  response  to
pathogenic infections and tissue damages [5]. The activation of
inflammasome has been linked to different diseases including
viral  infections  [6],  diabetes  [7],  hypertension  [8],  and  rheu-
matoid arthritis [9]. In CNS, inflammasomes play a pathogenic
role in infectious conditions such as pneumococcal meningitis
[10],  Toxoplasma  gondii  infection  [11],  murine  Japanese
encephalitis  [12],  and  HIV/AIDS  [13].  Recently,  inflamma-
somes have also been linked to neurodegenerative diseases. In
this  review,  we  discuss  the  recent  research  progress  on  the
activation  and  function  of  inflammasomes  in  neurodegene-
rative disorders.
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2. INFLAMMASOMES

Inflammasomes are multimeric protein complexes compri-
sing of Pattern Recognition Receptor (PRR), an apoptosis-asso-
ciated  speck-like  protein  containing  a  caspase  recruitment
domain  (ASC)  adaptor  protein,  and  procaspase-1  [14].  The
recognition of pathogen-associated molecular patterns and dan-
ger-associated molecular patterns by PRR triggers the assem-
bly of the inflammasome complex [15]. Inflammasome oligo-
merization leads to self-cleavage of procaspase-1 to generate
activated  caspase-1,  which  is  essential  for  the  maturation  of
interleukin-1β  (IL-1β)  [16]  and  interleukin-18  (IL-18)  [17].
PPRs are divided into four distinct classes: Toll-Like Receptors
(TLRs),  C-type  Lectin  Receptors  (CLRs),  Retinoic  acid-
inducible  gene  I-Like  Receptors  (RLRs),  and  Nucleotide-
binding  oligo-merization  domain-Like  Receptors  (NLRs).  It
has  been  reported  that  few  NLR  family  members  including
NLRP1,  NLRP3,  NLRC4,  Pyrin,  and  AIM2  are  able  to
assemble  the  in-flammasome  complex  in  vivo  [18  -  20].  Of
those, NLRP3 inflammasome has been extensively studied and
is  linked to neurodegenerative disorders.  Inflammasomes are
mainly invol-ved in the innate immune response, contributing
to  neuro-inflammatory  damage  (Fig.  1).  The  inflammasome
mediates  secretion  of  IL-1β  and  IL-18  which  induces  the
fundamental inflammatory events in neuroinflammation [21].
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Fig. (1). Schematic description of inflammasome activation pathways in neurodegenerative disorders. The assembly of the NLRP3 inflammasome in
CNS inflammatory cells can be induced by fibrillar amyloid β (Aβ) in Alzheimer’s disease or fibrillar α-synuclein (α-Syn) in Parkinson’s disease.
Phagocytosis of fibrillar Aβ induces lysosomal rupture, resulting in the leakage of cathepsin B. Phagocytosis of fibrillar α-Syn also leads to the
release of cathepsin B. Cytoplasmic cathepsin B activate the NLRP3 inflammasome. IL-1β and IL-18 can promote polarization of helper T (Th) cells.
Cytokines released by both Th1 and Th17 induce the inflammatory reactions, which promote demyelination and axonal damage in the multiple
sclerosis. In amyotrophic lateral sclerosis, the interaction of TAR DNA binding protein (TDP-43) with CD14 receptor promotes the activation of
nuclear factor κB (NF-κB) pathways, leading to the increased expression of NLRP3 mRNA and production of caspase-1 and IL-1β.

3. ALZHEIMER’S DISEASE

Alzheimer’s Disease (AD) is a progressive neurodegene-
rative disease characterized by dementia and memory loss [22].
The pathological hallmarks of AD are the extracellular deposits
of amyloid plaques and intracellular accumulation of Neurofi-
brillary  Tangles  (NFTs)  [23].  Although  there  are  numerous
possible etiologies for AD, the exact mechanisms for the onset
remain unclear. Recently, neuroinflammation has emerged as
an  important  risk  factor  in  the  development  of  AD.  In  CNS,
microglia play a pivotal role in the inflammatory reaction [24].
In  an  AD  patient's  brain,  the  microglia  are  seen  gathered
around the  amyloid  β  (Aβ)  plaques  [25]  and  induce  massive
neuronal cell death through secretion of tissue necrosis factor α
(TNF-α) [26].

Helle et al. first reported that NLRP3 inflammasomes can
be  activated  by  fibrillar  Aβ.  Phagocytosis  of  fibrillar  Aβ  by
activated microglia induces lysosomal damage, resulting in the
leakage of cathepsin B. This study revealed that cytoplasmic
cathepsin B activates NLRP3 inflammasome and induces the
release of IL-1β by microglia [27]. The study by Heneka et al.
reported  that  knockdown  of  NLRP3  decreases  the  accumu-
lation  of  Aβ,  and  prevents  the  behavioral  and  cognitive
dysfunction  in  the  aged  APP/Presenilin-1  (PS1)  transgenic

mice  model  of  AD.  APP/PS1/NLRP3-/-  mice  also  showed
decreased accumulation of Aβ plaque in the hippocampus [28].
Other  evidence  has  suggested  that  activation  of  the  nuclear
factor-kappa  B  (NF-κB)  pathway  has  a  critical  role  in  the
activation  of  NLRP3  inflammasome  [29].  Shi  et  al.  showed
that  artemisinin,  a  known  antimalarial  drug,  significantly
inhibited the activation of NF-κB and NALP3 inflammasome,
and reduced the amyloid plaque deposition in the cortex and
hippocampus in APPswe/PS1dE9 transgenic mice [30].

It  has  also  been  reported  that  NLRP1  contributes  to  the
age-related neuronal loss. The expression of NLRP1 was ob-
served to increase after 6 months in APP/PS1 mice; however,
knockdown of  NLRP1 decreases  the  neuronal  cell  death  and
rescues early cognitive deficits [31]. Kaushal et al. showed that
NLRP1 inflammasome activates caspase-1, which subsequen-
tly activated caspase-6, in human primary neurons treated with
serum  deprivation  and  benzylated  ATP  [32].  Caspase-6  is
known  as  a  key  effector  of  apoptosis.  Numerous  other  evi-
dences reveal that caspase-6 activity is strongly associated with
AD  pathologies.  LeBlanc  et  al.  reported  that  caspase-6  is
responsible for the increased levels of Aβ in primary cultures
of human neurons [33]. It was also reported that the activated
caspase-6 is exceedingly observed in the brain of both sporadic
and familial AD [34, 35].
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Tau protein can be cleaved by caspase-3 at Asp421 [36] and
this  truncated  tau  (TauΔCasp3)  induces  cell  death  in  the
primary hippocampal neurons [37]. Caspase-6 also cleaves the
tau at Asp402 [38] and Asp13 [39] in vitro. Another study showed
that  the  activated  caspase-6  and  TauΔCasp6  were  highly
observed  in  neuropil  threads,  NFTs,  and  neuritic  plaques  of
end-stage AD brain [38].

4. PARKINSON’S DISEASE

Parkinson’s  Disease  (PD)  is  the  second  most  common
neurodegenerative disorder, characterized by progressive loss
of  dopaminergic  (DA)  neurons  in  the  substantia  nigra  pars
compacta (SNc) located in the midbrain [40]. The pathological
hallmark  of  PD  is  Lewy  bodies  composed  of  misfolded  α-
synuclein (α-Syn) aggregates [41]. Pathogenesis of PD is still
unclear,  but  accumulating  evidence  indicates  that  neuroin-
flammation may act as a risk factor for the development of PD.
Significantly increased levels of pro-inflammatory cytokines,
including  IL-1,  IL-2,  IL-6,  and  TNF-α,  were  detected  in  the
serum and Cerebrospinal  Fluid (CSF) of  PD patients  [42].  It
was  reported  that  the  use  of  non-steroidal  anti-inflammatory
drugs reduces the risk of PD onset [43, 44].

Several studies have shown that α-Syn activates microglia
in vitro  and in vivo  [45 -  47].  The exposure of monocytes to
fibrillar  α-Syn  induced  the  secretion  of  IL-1β  via  caspase-1
activation  and  the  up-regulation  of  NLRP3  [48].  This  study
also showed that phagocytosis of fibrillar α-Syn by monocytes
leads to the release of cathepsin B and production of Reactive
Oxygen Species (ROS), which are known activators of NLRP3
inflammasomes.  A  recent  study  reported  that  α-Syn  can  be
cleaved  directly  by  caspase-1  in  vitro  [49].  The  level  of
cytotoxicity  in  neuronal  cells  correlated  with  the  level  of
truncated  α-Syn,  but  inhibition  of  caspase-1  activity  rescued
the α-Syn-induced cytotoxicity.

MicroRNA-7  (miR-7)  is  a  direct  regulator  of  α-Syn  in
post-translational  modification.  Li  et  al.  reported  that  miR-7
has  a  neuroprotective  effect  in  the  1-methyl-4-phenylpyri-
dinium  (MPP+)  mediated  PD  model  [50].  In  this  study,  the
MPP+-elicited apoptotic effects on neurons were significantly
reduced by miR-7. Another study showed that NLRP3 inflam-
masomes  are  activated  in  the  midbrain  of  α-Syn-overex-
pressed A53T transgenic mice, but subsequent transfection of
miR-7  significantly  inhibited  the  A53T  α-Syn-induced  the
upregulation  of  NLRP3  [51].

ATP13A2  gene,  also  called  Park9,  encodes  a
transmembrane lysosomal p5-type ATPase (ATP13A2) which
is  involved  in  the  stabilization  of  lysosome  membrane
structure.  It  has  been  reported  that  ATP13A2  is  highly
expressed  in  the  SNc  [52].  Other  studies  reported  that
deficiency of ATP13A2 leads to the accumulation of α-Syn in
neuronal cells [53], and the mutation of ATP13A2 gene causes
an early-onset PD [54]. The study by Qiao et al. reported that
knockdown  of  ATP13A2  in  primary  astrocytes  causes
increased secretion of pro-inflammatory cytokines (TNF-α and
IL-6),  and  decreased  the  production  of  anti-inflammatory
cytokines (IL-4 and IL-10). In addition, the downregulation of
ATP13A2 increased the expression of as-trocytic cathepsin B,
which  subsequently  induces  the  activation  of  NLRP3

inflammasome  [55].

5. MULTIPLE SCLEROSIS

Multiple Sclerosis (MS) is an autoimmune disease charac-
terized by the progressive loss of myelin sheaths of neurons. T
lymphocytes play a pivotal role in the pathogenesis of MS [56].
It  has  been reported that  high numbers  of  T cells,  especially
myelin-specific  autoreactive  T  cells,  are  present  in  the  peri-
pheral blood of MS patient [57]. Immune cell infiltration into
the  CNS  is  tightly  controlled  by  the  Blood-Brain  Barrier
(BBB). Nevertheless, many immune cells are able to cross the
BBB  in  neuroinflammatory  diseases.  The  etiology  of  MS  is
still  not  known,  but  it  is  thought  that  the  activated  myelin-
specific T cells cross the BBB and trigger the recruitment of
other  in-flammatory  cells,  which  consequently  lead  to  the
destruction  of  the  myelin  sheath  [58].

T  helper  type  1  (Th1)  cells  are  the  main  effector  cells,
which activate the macrophages via interferon-gamma (IFN-γ).
Activated macrophages promote neuroinflammatory events by
releasing  inflammatory  mediators  including  cytokines,  ROS,
nitric  oxide and glutamate,  which then induce tissue damage
[59]. IL-17-producing effector T helper cells, called Th17 cells,
have emerged as key mediators of MS. Th17 cells produce the
effector cytokines including IL-6, IL-17, IL-21, IL-22, IL-23
and TNF-α, which induce the inflammatory reactions [60].

Previous studies have shown that  NLRP3 inflammasome
contributes to the development of MS. It was observed that the
expression of caspase-1 is significantly increased in the Peri-
pheral Blood Mononuclear Cells (PBMC) of MS patients [61].
Another study reported that the mRNA expression of inflam-
masome  associated  molecules,  including  NLRP3,  caspase-1,
IL-1β, is increased in the PBMC of MS patients as compared to
the healthy control group [62]. In active demyelinating lesions
of MS, reactive astrocytes and infiltrated perivascular macro-
phages express IL-1β and NLRP3 inflammasome components
including NLRP3, ASC, and CASP1 [63].

Cuprizone  is  known to  cause  extensive  demyelination  in
the corpus callosum [64]. Jha et al. reported that the expression
of Nlrp3 is increased in the cuprizone-induced demyelination
model  [65].  This  study  also  showed  that  demyelination  and
microglial  infiltration  are  significantly  reduced  in  the  cup-
rizone-treated  Nlrp3-/-  mice,  Casp1-/-  mice  and  IL-18−/−  mice;
however, no alteration was observed in IL-1β−/− mice. Experi-
mental  Autoimmune  Encephalomyelitis  (EAE)  is  a  widely-
used rodent model for MS [66]. It is known that macrophage
and  microglia  were  involved  in  the  development  and  prog-
ression of EAE [67 - 69]. However, the study by Vainchtein et
al.  reported  that  the  role  of  macrophages  and  microglia  is
different in acute EAE [70]. This study showed that infiltrated
macrophages  were  highly  immune  reactive,  while  microglia
were only weakly immune activated during acute EAE. In the
EAE model, Nlrp3-/- mice displayed reduced severity of EAE,
and significant reduction of the inflammatory cells infiltration
including macrophages, dendritic cells, CD4+, and CD8+ T cells
[71]. IFN-γ and IL-17 are key pro-inflammatory mediators in
the  development  of  EAE,  and  their  levels  were  significantly
reduced in the Nlrp3-/- mice and IL-18−/− mice. Another study
showed that Asc−/− mice and Nlrp3−/− mice were resistant to the
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development  of  EAE.  In  addition,  both  EAE-induced  Asc−/−

mice and Nlrp3−/− mice showed significantly reduced numbers
of  CD4+  T  cells  in  the  spinal  cord  and  brain  [72].  These
findings suggest that NLRP3 inflammasome is required for the
development of EAE.

6. AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic  Lateral  Sclerosis  (ALS)  is  a  fetal  neurode-
generative disorder characterized by progressive degeneration
of  the  upper  and  lower  motor  neurons  [73].  Astrocytes  and
microglia play major roles in the disease progression of ALS.
The aggregation of mutant Superoxide Dismutase 1 (SOD1) is
the  pathologic  hallmark  of  familial  ALS  (fALS)  [74].  It  has
been reported that astrocytes expressing mutated SOD1 result
in the death of primary motor neurons through the activation of
a  Bax-dependent  pathway  [75].  Another  study  showed  that
microglia  in  SOD1G93A  transgenic  mice  carrying  the  human
SOD1 mutant gene induced the motor neuron death via the NF-
κB dependent mechanism [76].

There  is  accumulating  evidence  suggesting  that  inflam-
masome is involved in the progression of ALS. The expression
of NLRP3 inflammasome components and IL-1β were increa-
sed  in  the  SOD1G93A  mouse  model,  as  well  as  in  spinal  cord
tissue of human sclerosis ALS (sALS) patients [77]. Another
study showed that  the IL-18 expression was increased in the
cerebral  tissue  of  sALS  patients  as  compared  to  an  age-
matched  control  group  [78].  Symptoms  of  cognitive  and
behavioral impairment in the later stages of ALS are believed
to be the results of neurodegeneration in the subcortical areas.
Massive dendritic swelling and neuronal loss were detected in
SOD1G93A  mice.  In  addition,  the  accumulation  of  misfolded
SOD1  protein  and  autophagy  markers  was  observed  in  the
anterodorsal nucleus of the anterior thalamus [79]. This study
also  showed  that  the  expression  of  NLRP3  and  ASC  was
significantly up-regulated in the anterodorsal thalamic nucleus
of SOD1G93A mice.

TAR  DNA  binding  protein  (TDP-43)  is  the  insoluble
multifunctional  nucleic  acid  binding  protein  which  has  an
important role in neuronal RNA metabolism related to neuronal
development and synaptic function [80]. TDP-43 is normally
located in  the  cell  nucleus;  however,  enhanced deposition of
TDP-43  in  the  cytoplasm is  observed  in  ALS [81].  A  recent
study  reported  that  the  interaction  of  TDP-43  with  CD14
receptor in microglia triggers the activation of the microglial
NF-κB, AP-1 and NLRP3 inflammasome pathways, leading to
the  production  of  TNF-α and IL-1β [82].  This  study showed
that TDP-43 induced the up-regulation of NLRP3 mRNA and
activation of caspase-1, but did not alter the mRNA expression
of NLRP1, NLRP2, AIM2, and NLRC4. TDP-43 also induced
the  up-regulation  of  NADPH  oxidase  2  (NOX2),  which  is
known an important source of ROS [83, 84]. ROS have been
suggested  as  the  key  triggers  of  NLRP3  inflammasome
activation  [85].

7. EPILEPSY

Epilepsy is a chronic neurological disorder that is charac-
terized  by  spontaneous  recurrent  seizures  accompanied  by
cognitive impairment and psychiatric disturbances [86]. Accu-

mulating evidence suggests that the unbalanced regulation of
neuroinflammation  plays  a  key  role  in  the  development  of
seizures  and  epilepsy  [87].  Increased  levels  of  pro-
inflammatory cytokines, including IL-1β, IL-6, and TNF-α, are
detected  in  the  brain  of  an  epilepsy  model  [88],  and  in  the
serum and CSF of epilepsy patients [89, 90]. In addition, the
microglia activation is correlated with the increased expression
of  pro-inflammatory  cytokines  in  the  epileptic  brain  [91].
Microglia display both neurotoxic and neuroprotective effects
in CNS disease [92]. Recent studies have shown that myeloid
infiltrates,  including  monocyte  and  macrophages,  and  astro-
cytes exacerbate the neuroinflammatory status,  whereas mic-
roglia play a protective role during early epileptogenesis [93,
94].

Several studies have reported that NLRP3 inflammasome
can be up-regulated in an epilepsy model.  The expression of
cleaved  IL-1β  and  hippocampal  NLRP3  inflammasome
components was elevated in a rat brain after Status Epilepticus
(SE).  On  the  other  hand,  siRNA  knockdown  of  NLRP3
reduced the levels of IL-1β, IL-18, and caspase-1 expression,
and  inhibited  hippocampal  neuronal  loss  [95].  Similarly,  the
levels  of  IL-1β,  NLRP3,  and  caspase-1  expression  were  up-
regulated in a Kainic Acid (KA)-induced epilepsy model; how-
ever,  curcumin  suppressed  the  protein  expression  of  IL-1β,
NLRP3  and  caspase-1,  and  reduced  neuronal  loss  in  the
hippocampus [96]. NLRP3 inflammasome can be activated by
oxidative  stress  [97].  The  concentration  of  oxidative  stress
markers,  including  nitrite  and  malondialdehyde  (MDA),  and
the expression of IL-1β, NLRP3, and caspase-1 were increased
significantly in a KA-induced Temporal Lobe Epilepsy (TLE)
model.  In  contrast,  the  high  antioxidant  activity,  including
glutathione (GSH), superoxide dismutase (SOD), and catalase,
was  decreased  significantly  [98].  Huperzine  A  (Hup-A),  a
natural  acetylcholinesterase  inhibitor,  has  been  used  for  the
treatment of AD because of its neuroprotective effects [99]. In
the KA-induced TLE model, treatment with Hup-A reduced the
nitrite and MDA concentrations, as well as the expression of
IL-1β and caspase-1, while it increased the SOD and catalase
activities.

Recent evidence also suggests that NLRP1 contributes to
the pathogenesis of TLE. The increased expression of NLRP1
and caspase-1 was observed in the hippocampus of mesial TLE
patients.  In  an  amygdala  kindling-induced  TLE  rat  model,
siRNA  knockdown  of  NLRP1  reduced  neuronal  loss  and
caspase-1 expression and attenuated the seizure frequency and
severity  [100].  Similarly,  the  expression  of  inflammasome
components,  including NLRP1,  ASC,  and csapase-1,  and in-
flammatory cytokines, including IL-1β, IL-18, IL-6, and TNF-
α,  increased  in  the  brains  of  a  pentylenetetrazole-induced
epilepsy model. On the other hand, treatment with sinomenine,
an  anti-rheumatic  alkaloid,  suppressed  the  expression  of
NLRP1  inflammasome  components  and  inflammatory  cyto-
kines [101].

CONCLUSION

In this review, we focused on the role of inflammasomes in
neurodegenerative  disorder.  Each  neurodegenerative  disease
has its own prognostic characteristic and symptomatic patterns.
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However, the up-regulated inflammatory response is common
to  all  diseases.  Inflammasomes  especially  play  an  important
role  in  the  initiation  and  progress  of  neuroinflammation.  In
AD, the  amyloid plaques  and neurofibrillary  tangles  activate
inflammasomes in the microglia, astrocytes and neuron itself.
As a consequence, the level of IL-1β increases in the CNS of
AD  patients,  thereby  promoting  neuroinflammation.  In  Par-
kinson’s disease, α-synuclein aggregation activates the inflam-
masome  complex  in  microglia.  Enhanced  NLRP3  inflam-
masome activation and up-regulated caspase-1 were detected in
the  postmortem  MS  brain.  Increased  expression  of  NLRP3
inflammasome  components  and  IL-1β  was  observed  in  ALS
animal models, as well as human CNS tissue. The up-regulated
expression  of  NLRP1  and  NLRP3  inflammasomes  was  de-
tected in the brain tissue of an epilepsy model. As discussed in
this  paper,  inflammasome  is  a  major  contributor  to  neuro-
inflammation in neurodegenerative disorders. However, only a
few  inflammasomes  have  been  characterized.  Better  under-
standing the role of the inflammasome in neuroinflammation
will provide more information to investigate the pathogenesis
of neurodegenerative disorders.
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